using inductive method
$\sqrt{a^2_1}=\left | a_1 \right |=\left | a_1-b_1+b_1 \right |\leq \left | a_1-b_1\right |+\left |b_1 \right |
=\sqrt{(a_1-b_1)^2}+\sqrt{(b_1)^2}$
n=1 is true
suppose n=n is true
$$\sqrt{a_{1}^2+...+a_{n}^2}\leq\sqrt{(a_{1}-b_{1})^2+...+(a_{n}-b_{n})^2}+\sqrt{b_{1}^2+...+b_{n}^2}$$
let $P={a_{1}^2+...+a_{n}^2},Q={(a_{1}^2-b_1)^2+...+(a_{n}-b_n)^2},R={b_{1}^2+...+b_{n}^2}$
that is $\sqrt P\leq \sqrt Q+\sqrt R$
for n=n+1
we will prove :$\sqrt {P+a^2_{n+1}}\leq\sqrt {Q+(a_{n+1}-b_{n+1})^2}+\sqrt {R+b^2_{n+1}}$
with the help of the following diagram it is easy to get the proof
here CF=$\sqrt {P+a^2_{n+1}}-\sqrt P$
BD=CE=$\sqrt {Q+(a_{n+1}-b_{n+1})^2}-\sqrt Q$
and BD//CE
BC=DE
and BC//DE
EF=$\sqrt {R+b^2_{n+1}}-\sqrt R$
that is $AF\leq AD+DF$
View attachment 6614
IF point D between A and F then equality will hold