I Can I always consider velocities and coordinates to be independent?

AI Thread Summary
The discussion centers on the independence of velocities and coordinates in both Cartesian and generalized contexts, particularly in relation to Lagrangian mechanics. It highlights that the fundamental approach in Lagrangian mechanics involves analyzing the Lagrangian as a function of independent coordinates and their time derivatives, leading to the Euler-Lagrange equations. However, it emphasizes that velocities are inherently dependent on the chosen frame of reference, as they relate to a specific point that can be at rest in various coordinate systems. This dependency complicates the notion of treating velocities and coordinates as independent. Ultimately, the relationship between these quantities is more intricate than initially assumed.
Ahmed1029
Messages
109
Reaction score
40
It's a topic that's been giving be a headache for some time. I'm not sure if/why/whether I can always consider velocities and (independent) coordinates to be independent, whether in case of cartesian coordinates and velocities or generalized coordinates and velocities.
 
Physics news on Phys.org
Ahmed1029 said:
It's a topic that's been giving be a headache for some time. I'm not sure if/why/whether I can always consider velocities and (independent) coordinates to be independent, whether in case of cartesian coordinates and velocities or generalized coordinates and velocities.
Has this something to do with Lagrangian mechanics?
 
  • Like
Likes Ahmed1029 and vanhees71
PeroK said:
Has this something to do with Lagrangian mechanics?
Studying lagrangian mechanics evoked this question in my mind, but I thought I was missing a more general case.
 
Ahmed1029 said:
Studying lagrangian mechanics evoked this question in my mind, but I thought I was missing a more general case.
The fundamental starting point for Lagrangian mechanics is to study the functional form of the Lagrangian in terms of an abstract function of independent variables: the coordinates and their first time derivatives.

This functional analysis yields the Euler-Lagrange equations as an alternative to Newton's second law.

At this point, the quantities resume their normal role as the analysis switches to the time-based trajectories or solutions to the physical problem. I.e. when we actually solve the Euler-Lagrange equations.

This strategy is often not explained very clearly in textbooks.
 
  • Like
Likes Ahmed1029 and vanhees71
Not clear on what you're asking, but here's my rather convoluted take on getting to a "no" answer to what I think you're asking.

Velocities always depend on a specific frame of reference since you HAVE to be talking about velocity in relation TO something. That something is at a minimum a point and there is a frame of reference in which that point is at rest. You can then assign an infinite number of different coordinate systems such that that point is at the origin of the system. Thus there are an infinite number of coordinate systems that are related to that velocity (or probably it would be more appropriate linguistically to say that the velocity is related to the coordinate systems).
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top