Can I always consider velocities and coordinates to be independent?

Click For Summary
SUMMARY

The discussion centers on the independence of velocities and coordinates within the context of Lagrangian mechanics. It establishes that velocities cannot be considered independent of coordinates due to their dependence on a specific frame of reference. The analysis highlights that velocities relate to coordinate systems, emphasizing the necessity of a reference point for defining velocity. The Euler-Lagrange equations serve as a bridge between Lagrangian mechanics and traditional Newtonian physics, reinforcing the interdependence of these quantities.

PREREQUISITES
  • Understanding of Lagrangian mechanics
  • Familiarity with Euler-Lagrange equations
  • Knowledge of coordinate systems and frames of reference
  • Basic concepts of classical mechanics
NEXT STEPS
  • Study the derivation and applications of Euler-Lagrange equations
  • Explore the relationship between coordinate systems and velocities in classical mechanics
  • Investigate the implications of frame of reference on velocity measurements
  • Learn about generalized coordinates in Lagrangian mechanics
USEFUL FOR

Students and professionals in physics, particularly those studying classical mechanics, Lagrangian mechanics, and anyone interested in the relationship between velocities and coordinates in physical systems.

Ahmed1029
Messages
109
Reaction score
40
It's a topic that's been giving be a headache for some time. I'm not sure if/why/whether I can always consider velocities and (independent) coordinates to be independent, whether in case of cartesian coordinates and velocities or generalized coordinates and velocities.
 
Physics news on Phys.org
Ahmed1029 said:
It's a topic that's been giving be a headache for some time. I'm not sure if/why/whether I can always consider velocities and (independent) coordinates to be independent, whether in case of cartesian coordinates and velocities or generalized coordinates and velocities.
Has this something to do with Lagrangian mechanics?
 
  • Like
Likes   Reactions: Ahmed1029 and vanhees71
PeroK said:
Has this something to do with Lagrangian mechanics?
Studying lagrangian mechanics evoked this question in my mind, but I thought I was missing a more general case.
 
Ahmed1029 said:
Studying lagrangian mechanics evoked this question in my mind, but I thought I was missing a more general case.
The fundamental starting point for Lagrangian mechanics is to study the functional form of the Lagrangian in terms of an abstract function of independent variables: the coordinates and their first time derivatives.

This functional analysis yields the Euler-Lagrange equations as an alternative to Newton's second law.

At this point, the quantities resume their normal role as the analysis switches to the time-based trajectories or solutions to the physical problem. I.e. when we actually solve the Euler-Lagrange equations.

This strategy is often not explained very clearly in textbooks.
 
  • Like
Likes   Reactions: Ahmed1029 and vanhees71
Not clear on what you're asking, but here's my rather convoluted take on getting to a "no" answer to what I think you're asking.

Velocities always depend on a specific frame of reference since you HAVE to be talking about velocity in relation TO something. That something is at a minimum a point and there is a frame of reference in which that point is at rest. You can then assign an infinite number of different coordinate systems such that that point is at the origin of the system. Thus there are an infinite number of coordinate systems that are related to that velocity (or probably it would be more appropriate linguistically to say that the velocity is related to the coordinate systems).
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K