We have to distinguish between two thoughts:
1) No human being can determine if the given limit is convergent or divergent
2) The given limit is neither convergent or divergent - thus explaining the failure of human beings to determine whether it is convergent or divergent.
Thought 2) is impossible if we accept that the definition of the limit produces a statement - i.e. that when applied to a specific limit, the requirements for a limit to be convergent are either a true statement or a false statement. Taking "divergent" to mean "not convergent", we have that each limit must be convergent or divergent. To argue against 2) , I think you would have to formulate an argument that there is some ambiguity in the definition of limit that would make the definition not actually a statement.
Thought 1) might be reformulated as a statement about "computability". There are technical definitions for what sorts of functions are "computable". If the limit involved a function that was not computable, that would suggest that no human being could evaluate the convergence of the limit. However, there might be a loophole in that argument. It may be possible to compute certain properties of an uncomputable function, even though we cannot compute its numerical value.