Can Laplace Transforms be Applied to Finite Intervals?

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
I don't know why, but my answer is wrong.
Relevant Equations
.
"Consider a string of length L that is connected at both ends to supports and is subjected to a load (external force per unit length) of f(x). Find the displcament u"
https://i.stack.imgur.com/yVIDG.png

We need to solve this:
$$Tu_{xx} = f(x)$$ subject to $$u(0)=u(L)=0$$

But i don't understand what is the problem in my solutions:
$$Tu_{xx} = f(x) = > Tu_{xx} = \delta({x-\epsilon})\\T(Us^2-su(0)-u_{x}(0)) = e^{-s \epsilon}\\U = (e^{-s \epsilon}/T + u_{x}(0))/s^2$$

So, we know that the inverse of $$e^{-s \epsilon}/(Ts^2) = H(x-\epsilon)x/T$$ and inverse of $$(u_{x}(0))/s^2 = u_{x}(0)x$$

So, shouldn't the final answer be $$u = \int_{0}^{L} f(\epsilon) (H(x-\epsilon)x/T + u_{x}(0)x) d \epsilon$$

Why is it wrong?
 
Physics news on Phys.org
You have attempted a Laplace transform on a finite interval.
 
Orodruin said:
You have attempted a Laplace transform on a finite interval.
Hello. Thank you. But since we are restrict to a finite interval in x not infinite, this method is not possible? I mean, the method of find g using the delta dirac.
Or do i applied wrong? Could you give a tip to go on?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top