Can Laplace Transforms be Applied to Finite Intervals?

Click For Summary
The discussion focuses on applying Laplace transforms to solve a boundary value problem for a string of length L under a load f(x). The equation to solve is Tu_{xx} = f(x) with boundary conditions u(0)=u(L)=0. The user struggles with their solution approach, particularly in using the delta function and the inverse transforms. They question the validity of applying Laplace transforms in a finite interval context and seek guidance on correcting their method. The consensus indicates that the standard Laplace transform technique may not be appropriate for finite intervals without additional modifications.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
I don't know why, but my answer is wrong.
Relevant Equations
.
"Consider a string of length L that is connected at both ends to supports and is subjected to a load (external force per unit length) of f(x). Find the displcament u"
https://i.stack.imgur.com/yVIDG.png

We need to solve this:
$$Tu_{xx} = f(x)$$ subject to $$u(0)=u(L)=0$$

But i don't understand what is the problem in my solutions:
$$Tu_{xx} = f(x) = > Tu_{xx} = \delta({x-\epsilon})\\T(Us^2-su(0)-u_{x}(0)) = e^{-s \epsilon}\\U = (e^{-s \epsilon}/T + u_{x}(0))/s^2$$

So, we know that the inverse of $$e^{-s \epsilon}/(Ts^2) = H(x-\epsilon)x/T$$ and inverse of $$(u_{x}(0))/s^2 = u_{x}(0)x$$

So, shouldn't the final answer be $$u = \int_{0}^{L} f(\epsilon) (H(x-\epsilon)x/T + u_{x}(0)x) d \epsilon$$

Why is it wrong?
 
Physics news on Phys.org
You have attempted a Laplace transform on a finite interval.
 
Orodruin said:
You have attempted a Laplace transform on a finite interval.
Hello. Thank you. But since we are restrict to a finite interval in x not infinite, this method is not possible? I mean, the method of find g using the delta dirac.
Or do i applied wrong? Could you give a tip to go on?
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...