Can Logarithms Be Defined for Negative Numbers in Advanced Mathematics?

  • Thread starter Thread starter physicsdreams
  • Start date Start date
  • Tags Tags
    Logarithms Negative
Click For Summary
Logarithms are traditionally defined only for positive numbers in precalculus, but advanced mathematics allows for their extension to negative numbers through complex analysis. Euler's identity demonstrates that the natural logarithm can be evaluated at negative values, such as ln(-1) = iπ. This extension leads to the concept of logarithms as multivalued functions in the complex plane, which complicates the familiar logarithmic rules. While logarithms for negative numbers can be defined, they require a deeper understanding of complex numbers. Exploring complex analysis is recommended for those interested in this topic.
physicsdreams
Messages
57
Reaction score
0
I recently had a test (precalc) where we had to solve log(x)-log(x+4)=2 for x.

The answer comes out negative.
I understand that in precalc we are defining the logarithms for just positive numbers, but-

Is it ever justified to define a logarithm for all numbers, both negative and positive?
(higher levels of math?)

Thanks
 
Mathematics news on Phys.org
well in calculus while going over series, my professor introduced us to euler's famous identity/formula e^(ipi)+1=0, which is a pretty cool thing, you should look it up on google if you've never seen it
anyways my professor then went on that with this formula we are able to evaluate the natural logarithm at negative values
for example e^(ipi)=-1 taking the natural log of both sides you get ipi=ln(-1)
and you can do this for other negative values as well
ln(-5)=ipi+ln5
since ln(-5)=ln(-1)+ln(5)
if you'd like to learn more, your best bet would be complex analysis i believe
 
Hi physicsdreams! :smile:

Just like the square root of a negative number is defined for complex numbers, the logarithm of negative numbers, or rather of complex numbers in general, is defined.

You can find some info and pictures here:
http://mathworld.wolfram.com/NaturalLogarithm.html
Wikipedia also has a good article, but that may be more than you're bargaining for.

However, this is rather tricky, since the logarithm for complex numbers is not a normal function any more - it is a multivalued function.
In particular this means that the rules for logarithms that you're familiar with, do not work anymore.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K