MHB Can Sum to Product Inequalities Hold for Non-Negative Reals?

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given non-negative reals, $\alpha_i$, where $i = 1,2,...,n.$

Prove, that

$\alpha_1+\alpha_2+...+\alpha_n \leq \frac{1}{2}$ $\Rightarrow$ $(1-\alpha_1)(1-\alpha_2)...(1-\alpha_n) \geq \frac{1}{2}.$
 
Mathematics news on Phys.org
Immediate consequence of Weiertrass inequality:

$$\prod_{1 \le k \le n}(1-a_k) \ge 1-\sum_{1 \le k \le n}a_k \ge 1-\frac{1}{2} = \frac{1}{2}.$$

There's an elegant proof of Weierstrass inequality.
 
June29 said:
Immediate consequence of Weiertrass inequality:

$$\prod_{1 \le k \le n}(1-a_k) \ge 1-\sum_{1 \le k \le n}a_k \ge 1-\frac{1}{2} = \frac{1}{2}.$$

There's an elegant proof of Weierstrass inequality.
Thankyou for a clever solution, June29, and for your participation!(Cool)
 
Can anyone prove the above statement by induction? (Wave)
 
lfdahl said:
Can anyone prove the above statement by induction? (Wave)

It's obviously true for $n=1$ since we have $ {\alpha}_1 \leqslant \frac{1}{2} = 1-\frac{1}{2} \implies 1-\alpha_1 \geqslant \frac{1}{2}. $

Now, suppose it's true for $n = k \in \mathbb{N}$. We shall prove that it's true for $n=k+1$. $\displaystyle \begin{aligned} \frac{1}{2} & \leqslant 1- \sum_{1 \leqslant j \leqslant k+1}\alpha_j = 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j \leqslant 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j+a_{k+1}\sum_{1 \leqslant j \leqslant k} \alpha_j \\& =\left(1-\alpha_{k+1}\right)\left(1-\sum_{1 \leqslant j \leqslant k} \alpha_j\right)
\leqslant \left(1-\alpha_{k+1}\right) \prod_{1 \leqslant j \leqslant k} \left(1-\alpha_j \right) = \prod_{1 \leqslant j \leqslant k+1} \left(1-\alpha_j \right) \end{aligned} $

So it's true for $n=k+1$. Since it's true for $n=1, k+1$, it's true for all $n\in\mathbb{N}$.
 
Last edited by a moderator:
June29 said:
It's obviously true for $n=1$ since we have $ {\alpha}_1 \leqslant \frac{1}{2} = 1-\frac{1}{2} \implies 1-\alpha_1 \geqslant \frac{1}{2}. $

Now, suppose it's true for $n = k \in \mathbb{N}$. We shall prove that it's true for $n=k+1$. $\displaystyle \begin{aligned} \frac{1}{2} & \leqslant 1- \sum_{1 \leqslant j \leqslant k+1}\alpha_j = 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j \leqslant 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j+a_{k+1}\sum_{1 \leqslant j \leqslant k} \alpha_j \\& =\left(1-\alpha_{k+1}\right)\left(1-\sum_{1 \leqslant j \leqslant k} \alpha_j\right)
\leqslant \left(1-\alpha_{k+1}\right) \prod_{1 \leqslant j \leqslant k} \left(1-\alpha_j \right) = \prod_{1 \leqslant j \leqslant k+1} \left(1-\alpha_j \right) \end{aligned} $

So it's true for $n=k+1$. Since it's true for $n=1, k+1$, it's true for all $n\in\mathbb{N}$.

A nice solution, June29! Thankyou for your participation!

Please remember to hide your solution in SP tags. Other forum users might try to solve the challenge preferably without knowing your solution. Thankyou in advance!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top