MHB Can Sum to Product Inequalities Hold for Non-Negative Reals?

Click For Summary
The discussion centers on proving that for non-negative reals $\alpha_i$, if the sum $\alpha_1 + \alpha_2 + ... + \alpha_n \leq \frac{1}{2}$, then the product $(1 - \alpha_1)(1 - \alpha_2)...(1 - \alpha_n) \geq \frac{1}{2}$. Participants express appreciation for a clever solution provided by June29, indicating it may have addressed the proof effectively. There is a repeated request for an inductive proof of the statement, highlighting interest in different methods of validation. Overall, the thread emphasizes the exploration of inequalities involving non-negative reals and their implications.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given non-negative reals, $\alpha_i$, where $i = 1,2,...,n.$

Prove, that

$\alpha_1+\alpha_2+...+\alpha_n \leq \frac{1}{2}$ $\Rightarrow$ $(1-\alpha_1)(1-\alpha_2)...(1-\alpha_n) \geq \frac{1}{2}.$
 
Mathematics news on Phys.org
Immediate consequence of Weiertrass inequality:

$$\prod_{1 \le k \le n}(1-a_k) \ge 1-\sum_{1 \le k \le n}a_k \ge 1-\frac{1}{2} = \frac{1}{2}.$$

There's an elegant proof of Weierstrass inequality.
 
June29 said:
Immediate consequence of Weiertrass inequality:

$$\prod_{1 \le k \le n}(1-a_k) \ge 1-\sum_{1 \le k \le n}a_k \ge 1-\frac{1}{2} = \frac{1}{2}.$$

There's an elegant proof of Weierstrass inequality.
Thankyou for a clever solution, June29, and for your participation!(Cool)
 
Can anyone prove the above statement by induction? (Wave)
 
lfdahl said:
Can anyone prove the above statement by induction? (Wave)

It's obviously true for $n=1$ since we have $ {\alpha}_1 \leqslant \frac{1}{2} = 1-\frac{1}{2} \implies 1-\alpha_1 \geqslant \frac{1}{2}. $

Now, suppose it's true for $n = k \in \mathbb{N}$. We shall prove that it's true for $n=k+1$. $\displaystyle \begin{aligned} \frac{1}{2} & \leqslant 1- \sum_{1 \leqslant j \leqslant k+1}\alpha_j = 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j \leqslant 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j+a_{k+1}\sum_{1 \leqslant j \leqslant k} \alpha_j \\& =\left(1-\alpha_{k+1}\right)\left(1-\sum_{1 \leqslant j \leqslant k} \alpha_j\right)
\leqslant \left(1-\alpha_{k+1}\right) \prod_{1 \leqslant j \leqslant k} \left(1-\alpha_j \right) = \prod_{1 \leqslant j \leqslant k+1} \left(1-\alpha_j \right) \end{aligned} $

So it's true for $n=k+1$. Since it's true for $n=1, k+1$, it's true for all $n\in\mathbb{N}$.
 
Last edited by a moderator:
June29 said:
It's obviously true for $n=1$ since we have $ {\alpha}_1 \leqslant \frac{1}{2} = 1-\frac{1}{2} \implies 1-\alpha_1 \geqslant \frac{1}{2}. $

Now, suppose it's true for $n = k \in \mathbb{N}$. We shall prove that it's true for $n=k+1$. $\displaystyle \begin{aligned} \frac{1}{2} & \leqslant 1- \sum_{1 \leqslant j \leqslant k+1}\alpha_j = 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j \leqslant 1-\alpha_{k+1}-\sum_{1 \leqslant j \leqslant k}\alpha_j+a_{k+1}\sum_{1 \leqslant j \leqslant k} \alpha_j \\& =\left(1-\alpha_{k+1}\right)\left(1-\sum_{1 \leqslant j \leqslant k} \alpha_j\right)
\leqslant \left(1-\alpha_{k+1}\right) \prod_{1 \leqslant j \leqslant k} \left(1-\alpha_j \right) = \prod_{1 \leqslant j \leqslant k+1} \left(1-\alpha_j \right) \end{aligned} $

So it's true for $n=k+1$. Since it's true for $n=1, k+1$, it's true for all $n\in\mathbb{N}$.

A nice solution, June29! Thankyou for your participation!

Please remember to hide your solution in SP tags. Other forum users might try to solve the challenge preferably without knowing your solution. Thankyou in advance!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K