Hi Blackforest! Are you really a dentist?. I've never imagined myself explaining the N_S equations to a german dentist

! What a situation!
Ok... It is very interesting for your part showing curiosity in advanced dynamics. To answer your question, it would be possible if LaTex is enabled yet. Let's go...These are the N_S equations written in the Weak Conservative Form:
Continuity: \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overline{v})=0
Continuity tell us about the mass conservation. The first term on the left is the local time variation of density. This term is active in unsteady and strong compressible processes, like unsteady gas flow at high #Mach and high #Strouhal numbers. The second term on the right is the divergence of the mass flux vector. This term represents the quantity of mass leaving the unit of volume per unit of time.
Momentum: \rho \frac{\partial \overline{v}}{\partial t} + \rho \overline{v}\cdot \nabla\overline{v} = -\nabla P + \nabla \cdot \overline{\tau'} + \rho \overline{f_m}
Momentum tell us about momentum flux conservation. The first time on the left measures the local acceleration of the flow in unsteady processes. The second term on the left is the dot product of the velocity and gradient tensor of the velocity. It measures the acceleration due to convective transport of momentum. The proper flow accelerates another parts of the same flow. This information is propagated by means of this term. The first term on the right is the gradient of pressure field. It represents the force caused by pressure, modifying the rest of the velocity field. The second term on the right is the divergence of the stress tensor. It represents the viscous forces acting as a stress field inside the proper flow. This term enables the sensivity of the flow about solid boundaries. The third term on the right is the force exerted by the volumetric forces, like gravity (or electromagnetic force?). At high #Reynolds numbers, the convective term is the most important in the equation. At low #Froude numbers, the role of gravity is enough important of not being neglected. At high #Euler numbers, the pressure forces play an important role in the fluid motion.
Internal Energy: \rho \frac{\partial cT}{\partial t} + \rho \overline{v}\cdot \nabla(cT) = -P\nabla \cdot \overline{v} + \phi_v - \nabla \overline{q''}+ Q_r
This equation shows the Internal Energy conservation. The first term on the left is the local change of temperature. The second term on the left is the temperature variation due to convective transport through the flow field. The first term on the right is the power per volume unit experimented by a fluid particle being expansioned in a hidrostatic surrounding of pressure P. The second term on the right is the Rayleigh function of viscous heat dissipation. The flow has internal irreversibilities, so this term represents the internal heating dissipation due to friction between fluid particles. The third term on the right is the divergence of the heat flux. This term is very important because it modelizes the energy expulsion through the solid boundaries, and enhances heat transport phenomena across the flow field. The last term on the right is the heat released by means of Radiation or Chemical reaction. At high #Reynolds numbers the most important term is the convective transport of energy. The flow does not sense any boundaries to dissipate heat trough. At high #Mach numbers the importance of the pressure term is very important, due to compressive effects.
Any question? I hope it will clear it up to you a little bit more.