Can You Prove the Floor Function Challenge for Real Numbers?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary
SUMMARY

The forum discussion centers on proving the equation $\displaystyle\sum_{k=0}^{\infty} \left\lfloor\dfrac{x+2^k}{2^{k+1}}\right\rfloor=\lfloor x\rfloor$ for all real numbers $x$. The participants clarify that the expression is indeed a sum, not a limit, addressing previous confusion. Acknowledgment is given to Bacterius for pointing out a typo, which has since been corrected. The proof leverages Hermite's identity, demonstrating its applicability in this mathematical challenge.

PREREQUISITES
  • Understanding of the floor function and its properties
  • Familiarity with infinite series and summation techniques
  • Knowledge of Hermite's identity and its implications
  • Basic concepts of real analysis
NEXT STEPS
  • Study the properties of the floor function in depth
  • Explore infinite series convergence criteria
  • Research Hermite's identity and its applications in proofs
  • Learn about advanced techniques in real analysis
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in advanced proof techniques involving the floor function and infinite series.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all real $x$, prove that $\displaystyle\sum_{k=0}^{\infty} \left\lfloor\dfrac{x+2^k}{2^{k+1}}\right\rfloor=\lfloor x\rfloor$.
 
Last edited:
Mathematics news on Phys.org
Yes, it's supposed to be a sum, not a limit, in case anyone else was confused (can't believe nobody pointed it out).
 
Hi Bacterius,

Yep, you're right...sorry for making such a silly typo and thanks for pointing it out!

I've just fixed the typo. Thanks again.:)
 
Let $x$ be real, $n = \lfloor{x}\rfloor$, and for all integers $k \ge 0$ set

$A(k) = \left\lfloor{\frac{n+1}{2}}\right\rfloor + \left\lfloor{\frac{n+2}{4}}\right\rfloor + \cdots + \left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor + \left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor.$

Since $\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor$ is always an integer,

$\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor = \left\lfloor{\dfrac{\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor+1}{2}}\right\rfloor + \left\lfloor{\dfrac{\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor}{2}}\right\rfloor = \left\lfloor{\dfrac{\frac{n}{2^{k+1}}+1}{2}}\right\rfloor + \left\lfloor{\dfrac{\frac{n}{2^{k+1}}}{2}}\right\rfloor = \left\lfloor{\frac{n+2^{k+1}}{2^{k+2}}}\right\rfloor + \left\lfloor{\frac{n}{2^{k+2}}}\right\rfloor.$

Therefore $A(k+1) = A(k)$ for all $k$, i.e., $A(k)$ is constant. The value of the constant is

$A(0) = \left\lfloor{\frac{n+1}{2}}\right\rfloor + \left\lfloor{\frac{n}{2}}\right\rfloor = n$,

since $n$ is an integer. Thus $A(k) = n$ for all $k \ge 0$. Let $2^{k_0}$ is the highest power of $2$ not exceeding $n$. For all $k \ge k_0$, $\left\lfloor{n/2^{k+1}}\right\rfloor = 0$ and thus

$n = A(k) = \left\lfloor{\frac{n+1}{2}}\right\rfloor + \left\lfloor{\frac{n+2}{4}}\right\rfloor + \cdots + \left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor.$

This shows that

$\sum_{k = 0}^\infty
\left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor = n.$

Since for each $k \ge 0$,

$\left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor =\left\lfloor{\frac{x+2^k}{2^{k+1}}}\right\rfloor$,

it is also the case that

$\sum_{k = 0}^\infty \left\lfloor{\frac{x+2^k}{2^{k+1}}}\right\rfloor = n.$
 
Thanks, Euge for participating in this challenge problem.:) Your proof is great!

Here is the solution uses the Hermite's identity in the proof:

From the Hermite Identity, we have $\displaystyle\sum_{k=0}^{n-1} \left\lfloor x+\dfrac{k}{n}\right\rfloor=\lfloor nx\rfloor$ and taking $n=2$ we then have

$\displaystyle\sum_{k=0}^{1} \left\lfloor x+\dfrac{k}{2}\right\rfloor=\lfloor 2x\rfloor$

i.e. $\left\lfloor x\right\rfloor+\left\lfloor x+\dfrac{1}{2}\right\rfloor=\lfloor 2x\rfloor$ and rewriting to make $\displaystyle \left\lfloor x+\dfrac{1}{2}\right\rfloor$ as the subject gives

$\displaystyle \left\lfloor x+\dfrac{1}{2}\right\rfloor=\lfloor 2x\rfloor-\left\lfloor x\right\rfloor$

Note that we can make full use of this identity, as we can have

$\displaystyle \left\lfloor \dfrac{x}{2}+\dfrac{1}{2}\right\rfloor=\lfloor x\rfloor-\left\lfloor \dfrac{x}{2}\right\rfloor$

$\displaystyle \left\lfloor \dfrac{x}{4}+\dfrac{1}{2}\right\rfloor=\left\lfloor \dfrac{x}{2}\right\rfloor-\left\lfloor \dfrac{x}{4}\right\rfloor$

and so on and so forth.

Now, back to the question, expand the sum given in sigma notation into an explicit sum yields:

$\displaystyle\sum_{k=0}^{\infty} \left\lfloor\dfrac{x+2^k}{2^{k+1}}\right\rfloor$

$=\left\lfloor\dfrac{x+1}{2}\right\rfloor+\left\lfloor\dfrac{x+2}{4}\right\rfloor+\left\lfloor\dfrac{x+4}{8}\right\rfloor+\cdots$

$=\left\lfloor\dfrac{x}{2}+\dfrac{1}{2}\right\rfloor+\left\lfloor\dfrac{x}{4}+\dfrac{1}{2}\right\rfloor+\left\lfloor\dfrac{x}{8}+\dfrac{1}{2}\right\rfloor+\cdots$

$=\left\lfloor x\right\rfloor-\left\lfloor \dfrac{x}{2}\right\rfloor+\left\lfloor \dfrac{x}{2}\right\rfloor-\left\lfloor \dfrac{x}{4}\right\rfloor+\left\lfloor \dfrac{x}{4}\right\rfloor-\left\lfloor \dfrac{x}{8}\right\rfloor+\cdots$

$=\left\lfloor x\right\rfloor-\cancel{\left\lfloor \dfrac{x}{2}\right\rfloor}+\cancel{\left\lfloor \dfrac{x}{2}\right\rfloor}-\cancel{\left\lfloor \dfrac{x}{4}\right\rfloor}+\cancel{\left\lfloor \dfrac{x}{4}\right\rfloor}-\cancel{\left\lfloor \dfrac{x}{8}\right\rfloor}+\cdots$

$=\left\lfloor x\right\rfloor$

and we're done.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K