Can you prove the Floor Function Challenge?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary

Discussion Overview

The discussion centers around proving the equation $$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor=\left\lfloor{\dfrac{n(n+2)(2n-1)}{24}}\right\rfloor$$, with a focus on different cases for the variable n, specifically even and odd values. The scope includes mathematical reasoning and proof techniques.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the equation to be proven, suggesting a mathematical challenge.
  • Another participant expresses intent to prove the equation specifically for even n.
  • A subsequent post indicates a strategy to extend the proof to odd n by considering the last n-1 terms plus the nth term.
  • A later reply acknowledges a previous contributor's solution and indicates a similar approach was taken.

Areas of Agreement / Disagreement

Participants appear to be working towards a proof, with some focusing on specific cases (even and odd n). However, the discussion does not reach a consensus on the proof's validity or completeness.

Contextual Notes

There may be limitations regarding assumptions about the behavior of the floor function and the specific cases being considered (even vs. odd n), which are not fully explored in the posts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor=\left\lfloor{\dfrac{n(n+2)(2n-1)}{24}}\right\rfloor$$.
 
Mathematics news on Phys.org
anemone said:
Prove $$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor=\left\lfloor{\dfrac{n(n+2)(2n-1)}{24}}\right\rfloor$$.
I shall prove the same for n even
we have for k even

$\lfloor (\dfrac{k}{2})^2 \rfloor = (\dfrac{k}{2})^2\cdots(1)$ because $ (\dfrac{k}{2})$ is integer

further we have for k odd say (2m-1)

$\lfloor (\dfrac{k}{2})^2 \rfloor$

= $\lfloor (\dfrac{2m-1}{2})^2 \rfloor$

= $\lfloor \dfrac{4m^2-4m +1}{4} \rfloor$

= $\lfloor m^2-m + \dfrac{1}{4} \rfloor$

= $m^2-m$so summing the given expression from k = 1 to n breaking into even part and odd part we get

$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor$

= $\sum_{k=1}^{\frac{n}{2}}\left\lfloor{\left(\frac{2k-1}{2}\right)^2+ \left(\frac{2k}{2}\right)^2}\right\rfloor$ justified to merge the 2 because 2nd expression is integer

= $\sum_{k=1}^{\frac{n}{2}}{k^2-k+ k^2}$

= $\sum_{k=1}^{\frac{n}{2}}{2k^2-k}$

= $2 * \dfrac{\frac{n}{2}\cdot(\frac{n}{2}+1)\cdot(n+1)}{6}- \dfrac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2}$

= $\dfrac{n\cdot(n+2)\cdot(n+1)}{12}- \dfrac{n\cdot(n + 2)}{8}$

= $n\cdot(n+2)(\dfrac{2n-1}{24})$

= $\dfrac{n\cdot(n+2)\cdot(2n-1)}{24}$



because above is integer ( being sum of integers) hence same as $\lfloor \dfrac{n\cdot(n+2)\cdot(2n-1)}{24}\rfloor $

hence the result
 
kaliprasad said:
I shall prove the same for n even
we have for k even

$\lfloor (\dfrac{k}{2})^2 \rfloor = (\dfrac{k}{2})^2\cdots(1)$ because $ (\dfrac{k}{2})$ is integer

further we have for k odd say (2m-1)

$\lfloor (\dfrac{k}{2})^2 \rfloor$

= $\lfloor (\dfrac{2m-1}{2})^2 \rfloor$

= $\lfloor \dfrac{4m^2-4m +1}{4} \rfloor$

= $\lfloor m^2-m + \dfrac{1}{4} \rfloor$

= $m^2-m$so summing the given expression from k = 1 to n breaking into even part and odd part we get

$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor$

= $\sum_{k=1}^{\frac{n}{2}}\left\lfloor{\left(\frac{2k-1}{2}\right)^2+ \left(\frac{2k}{2}\right)^2}\right\rfloor$ justified to merge the 2 because 2nd expression is integer

= $\sum_{k=1}^{\frac{n}{2}}{k^2-k+ k^2}$

= $\sum_{k=1}^{\frac{n}{2}}{2k^2-k}$

= $2 * \dfrac{\frac{n}{2}\cdot(\frac{n}{2}+1)\cdot(n+1)}{6}- \dfrac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2}$

= $\dfrac{n\cdot(n+2)\cdot(n+1)}{12}- \dfrac{n\cdot(n + 2)}{8}$

= $n\cdot(n+2)(\dfrac{2n-1}{24})$

= $\dfrac{n\cdot(n+2)\cdot(2n-1)}{24}$



because above is integer ( being sum of integers) hence same as $\lfloor \dfrac{n\cdot(n+2)\cdot(2n-1)}{24}\rfloor $

hence the result
now based on result of even we prove for odd ( last n-1 terms + nth term , n is odd)
we have shown that for k odd = 2m- 1
$\lfloor (\dfrac{k}{2})^2 \rfloor$
= $\lfloor (\dfrac{2m-1}{2})^2 \rfloor$
= $\lfloor \dfrac{4m^2-4m +1}{4} \rfloor$
= $\lfloor m^2-m + \dfrac{1}{4} \rfloor$
= $m^2-m$
= $m(m-1)$
= $\dfrac{n+1}{2} \dfrac{n-1}{2}$
= $\dfrac{n^2-1}{4}$Now sum upto n terms

= $sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor$
= $(sum_{k=1}^{n-1}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor)+ \left\lfloor{\left(\frac{n}{2}\right)^2}\right\rfloor$
= $\dfrac{(n-1)(n+1)(2n-3)}{24} + \dfrac{n^2-1}{4}$ (sum upto n-1 terms n-1 even taken care)
= $\dfrac{(n-1)(n+1)(2n-3)+6n^2-6}{24}$
= $\dfrac{(n^2-1)(2n-3)+6n^2-6}{24}$
= $\dfrac{2n^3-3n^2-2n + 3+6n^2-6}{24}$
= $\dfrac{2n^3+ 3n^2-2n - 3}{24}$
= $\dfrac{n(2n^2 + 3n-2) - 3}{24}$
= $\dfrac{n(n+2)(2n-1)}{24} -\dfrac{1}{8}$
= $\lfloor \dfrac{n(n+2)(2n-1)}{24} \rfloor$
 
Thank you kaliprasad for your solution, very well done! My approach is more or less the same as yous, just so you know. :)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K