Can you prove the Floor Function Challenge?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary
SUMMARY

The forum discussion centers on proving the equation $$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor=\left\lfloor{\dfrac{n(n+2)(2n-1)}{24}}\right\rfloor$$. Participants confirm the validity of the proof for even integers and extend the argument to odd integers by considering the last n-1 terms plus the nth term. The discussion highlights the collaborative nature of mathematical proof, with acknowledgments to contributors like kaliprasad for their insights.

PREREQUISITES
  • Understanding of floor functions in mathematics
  • Familiarity with summation notation and series
  • Basic knowledge of even and odd integers
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of floor functions in mathematical analysis
  • Explore techniques for proving summation identities
  • Investigate the implications of even and odd integer properties in proofs
  • Learn about mathematical induction as a proof technique
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in advanced proof techniques and summation identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor=\left\lfloor{\dfrac{n(n+2)(2n-1)}{24}}\right\rfloor$$.
 
Mathematics news on Phys.org
anemone said:
Prove $$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor=\left\lfloor{\dfrac{n(n+2)(2n-1)}{24}}\right\rfloor$$.
I shall prove the same for n even
we have for k even

$\lfloor (\dfrac{k}{2})^2 \rfloor = (\dfrac{k}{2})^2\cdots(1)$ because $ (\dfrac{k}{2})$ is integer

further we have for k odd say (2m-1)

$\lfloor (\dfrac{k}{2})^2 \rfloor$

= $\lfloor (\dfrac{2m-1}{2})^2 \rfloor$

= $\lfloor \dfrac{4m^2-4m +1}{4} \rfloor$

= $\lfloor m^2-m + \dfrac{1}{4} \rfloor$

= $m^2-m$so summing the given expression from k = 1 to n breaking into even part and odd part we get

$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor$

= $\sum_{k=1}^{\frac{n}{2}}\left\lfloor{\left(\frac{2k-1}{2}\right)^2+ \left(\frac{2k}{2}\right)^2}\right\rfloor$ justified to merge the 2 because 2nd expression is integer

= $\sum_{k=1}^{\frac{n}{2}}{k^2-k+ k^2}$

= $\sum_{k=1}^{\frac{n}{2}}{2k^2-k}$

= $2 * \dfrac{\frac{n}{2}\cdot(\frac{n}{2}+1)\cdot(n+1)}{6}- \dfrac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2}$

= $\dfrac{n\cdot(n+2)\cdot(n+1)}{12}- \dfrac{n\cdot(n + 2)}{8}$

= $n\cdot(n+2)(\dfrac{2n-1}{24})$

= $\dfrac{n\cdot(n+2)\cdot(2n-1)}{24}$



because above is integer ( being sum of integers) hence same as $\lfloor \dfrac{n\cdot(n+2)\cdot(2n-1)}{24}\rfloor $

hence the result
 
kaliprasad said:
I shall prove the same for n even
we have for k even

$\lfloor (\dfrac{k}{2})^2 \rfloor = (\dfrac{k}{2})^2\cdots(1)$ because $ (\dfrac{k}{2})$ is integer

further we have for k odd say (2m-1)

$\lfloor (\dfrac{k}{2})^2 \rfloor$

= $\lfloor (\dfrac{2m-1}{2})^2 \rfloor$

= $\lfloor \dfrac{4m^2-4m +1}{4} \rfloor$

= $\lfloor m^2-m + \dfrac{1}{4} \rfloor$

= $m^2-m$so summing the given expression from k = 1 to n breaking into even part and odd part we get

$\sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor$

= $\sum_{k=1}^{\frac{n}{2}}\left\lfloor{\left(\frac{2k-1}{2}\right)^2+ \left(\frac{2k}{2}\right)^2}\right\rfloor$ justified to merge the 2 because 2nd expression is integer

= $\sum_{k=1}^{\frac{n}{2}}{k^2-k+ k^2}$

= $\sum_{k=1}^{\frac{n}{2}}{2k^2-k}$

= $2 * \dfrac{\frac{n}{2}\cdot(\frac{n}{2}+1)\cdot(n+1)}{6}- \dfrac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2}$

= $\dfrac{n\cdot(n+2)\cdot(n+1)}{12}- \dfrac{n\cdot(n + 2)}{8}$

= $n\cdot(n+2)(\dfrac{2n-1}{24})$

= $\dfrac{n\cdot(n+2)\cdot(2n-1)}{24}$



because above is integer ( being sum of integers) hence same as $\lfloor \dfrac{n\cdot(n+2)\cdot(2n-1)}{24}\rfloor $

hence the result
now based on result of even we prove for odd ( last n-1 terms + nth term , n is odd)
we have shown that for k odd = 2m- 1
$\lfloor (\dfrac{k}{2})^2 \rfloor$
= $\lfloor (\dfrac{2m-1}{2})^2 \rfloor$
= $\lfloor \dfrac{4m^2-4m +1}{4} \rfloor$
= $\lfloor m^2-m + \dfrac{1}{4} \rfloor$
= $m^2-m$
= $m(m-1)$
= $\dfrac{n+1}{2} \dfrac{n-1}{2}$
= $\dfrac{n^2-1}{4}$Now sum upto n terms

= $sum_{k=1}^{n}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor$
= $(sum_{k=1}^{n-1}\left\lfloor{\left(\frac{k}{2}\right)^2}\right\rfloor)+ \left\lfloor{\left(\frac{n}{2}\right)^2}\right\rfloor$
= $\dfrac{(n-1)(n+1)(2n-3)}{24} + \dfrac{n^2-1}{4}$ (sum upto n-1 terms n-1 even taken care)
= $\dfrac{(n-1)(n+1)(2n-3)+6n^2-6}{24}$
= $\dfrac{(n^2-1)(2n-3)+6n^2-6}{24}$
= $\dfrac{2n^3-3n^2-2n + 3+6n^2-6}{24}$
= $\dfrac{2n^3+ 3n^2-2n - 3}{24}$
= $\dfrac{n(2n^2 + 3n-2) - 3}{24}$
= $\dfrac{n(n+2)(2n-1)}{24} -\dfrac{1}{8}$
= $\lfloor \dfrac{n(n+2)(2n-1)}{24} \rfloor$
 
Thank you kaliprasad for your solution, very well done! My approach is more or less the same as yous, just so you know. :)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K