MHB Can you prove these floor and ceiling equations?

  • Thread starter Thread starter Walshy1
  • Start date Start date
  • Tags Tags
    Proofs
AI Thread Summary
The discussion centers on proving two equations involving floor and ceiling functions. The first proof demonstrates that for any non-integer real number x, the equation floor(x) + floor(-x) equals -1. The reasoning involves understanding the definitions of floor functions and applying properties of integers. The second proof shows that floor(floor(x/2)/2) equals floor(x/4) by analyzing specific cases based on the form of x. Both proofs rely on careful manipulation of the definitions and properties of floor functions.
Walshy1
Messages
3
Reaction score
0
Hi, i need help with 2 proofs based off of floor and ceiling.
1.)For any real number x, if x is not an integer, then floor(x) + floor(-x) =- 1.2.For all real numbers x, floor(floor(x/2)/2) = floor(x/4).

Thanks.
 
Physics news on Phys.org
floor(x) = x - a, where 0 <= a < 1

floor(-x) = -x - b, where 0 <= b < 1

You tell me why a + b = 1
 
tkhunny said:
floor(x) = x - a, where 0 <= a < 1

floor(-x) = -x - b, where 0 <= b < 1

You tell me why a + b = 1
I'm sorry that makes no sense to me.
 
I urge you to think more about the given hint...it leads immediately to the proof you seek.

Once this clicks, a very similar argument will work for the second proof.
 
$ \lfloor{x}\rfloor = \max\{m\in\mathbb{Z}\mid m < x\}$ when $x$ is not an integer, thus:

$ \begin{aligned} \lfloor{x}\rfloor+\lfloor{-x}\rfloor & = \max\{m\in\mathbb{Z}\mid m < x\}+\max\{m\in\mathbb{Z}\mid m < -x\} \\& = \max\{m\in\mathbb{Z}\mid 2m < 0\} = \max\{m\in\mathbb{Z}\mid m < 0\} \\& = -1.\end{aligned}$

This addition (of sets usually) is called Minkowski addition.
 
For the second problem, you can consider cases when $x$ has the form $4n+y$ and $4n+2+y$ where $n\in\mathbb{Z}$ and $0\le y<2$. For example, suppose that $x=4n+y$. Then $x/2=2n+y/2$. Since $0\le y/2<1$, $\lfloor x/2\rfloor=2n$. Therefore, $\lfloor\lfloor x/2\rfloor/2\rfloor=n$. Now you show that $\lfloor (4n+y)/4\rfloor=n$. Also, show that $\lfloor\lfloor x/2\rfloor/2\rfloor=\lfloor x/4\rfloor$ when $x=4n+2+y$ where $n\in\mathbb{Z}$ and $0\le y<2$
 
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Back
Top