MHB Can You Solve the Cube of Cosines for Specific Angles?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
AI Thread Summary
The discussion revolves around evaluating the expression \(\cos^3 \left(\frac{2\pi}{7}\right)+\cos^3 \left(\frac{4\pi}{7}\right)+\cos^3 \left(\frac{8\pi}{7}\right). Members are encouraged to participate in solving the Problem of the Week (POTW). Two members, kaliprasad and MarkFL, successfully provided correct solutions. MarkFL's solution is highlighted, indicating a collaborative effort in tackling the mathematical challenge. The thread emphasizes the importance of following the provided guidelines for participation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\cos^3 \left(\frac{2\pi}{7}\right)+\cos^3 \left(\frac{4\pi}{7}\right)+\cos^3 \left(\frac{8\pi}{7}\right).$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution::)

1. kaliprasad
2. MarkFL

Solution from MarkFL:
Let:

$$S=\cos^3\left(\frac{2\pi}{7}\right)+\cos^3\left(\frac{4\pi}{7}\right)+\cos^3\left(\frac{8\pi}{7}\right)$$

Now, if we use the power reductions formula:

$$\cos^3(A)=\frac{3\cos(A)+\cos(3A)}{4}$$

We may write:

$$4S=3\left(\cos\left(\frac{2\pi}{7}\right)+\cos\left(\frac{4\pi}{7}\right)+\cos\left(\frac{8\pi}{7}\right)\right)+\left(\cos\left(\frac{6\pi}{7}\right)+\cos\left(\frac{12\pi}{7}\right)+\cos\left(\frac{24\pi}{7}\right)\right)$$

Using:

$$\cos\left(\frac{6\pi}{7}\right)=\cos\left(\frac{8\pi}{7}\right)$$

$$\cos\left(\frac{12\pi}{7}\right)=\cos\left(\frac{2\pi}{7}\right)$$

$$\cos\left(\frac{24\pi}{7}\right)=\cos\left(\frac{4\pi}{7}\right)$$

We may now state:

$$S=\cos\left(\frac{2\pi}{7}\right)+\cos\left(\frac{4\pi}{7}\right)+\cos\left(\frac{8\pi}{7}\right)$$

Let:

$$r=\cos\left(\frac{2\pi}{7}\right)+i\sin\left(\frac{2\pi}{7}\right)$$

Now, consider the quadratic in $x$ with the following roots:

$$x_1=r+r^2+r^4$$

$$x_2=r^3+r^5+r^6$$

The sum of these roots is:

$$x_1+x_2=(1+r+r^2+r^3+r^4+r^5+r^6) - 1=\frac{1-r^7}{1-r}-1=-1$$

The product of the roots is:

$$x_1x_2=r^4+r^5+r^6+3r^7+r^8+r^9+r^10=1+r+r^2+r^3+r^4+r^5+r^6 + 2=2$$

Hence, our quadratic is:

$$x^2+x+2=0$$

And it's roots are:

$$x=\frac{-1\pm i\sqrt{7}}{2}$$

With:

$$x_1=r+r^2+r^4$$

We then see we must have:

$$S=-\frac{1}{2}$$
 
Back
Top