Can You Solve the Cube of Cosines for Specific Angles?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The forum discussion centers on evaluating the expression $$\cos^3 \left(\frac{2\pi}{7}\right)+\cos^3 \left(\frac{4\pi}{7}\right)+\cos^3 \left(\frac{8\pi}{7}\right)$$ as part of the Problem of the Week (POTW). Members kaliprasad and MarkFL provided correct solutions to the problem. The discussion emphasizes the importance of following the POTW guidelines for participation and solution submission.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with the properties of cosine functions
  • Knowledge of complex numbers and their applications in trigonometry
  • Ability to manipulate algebraic expressions involving trigonometric functions
NEXT STEPS
  • Research the derivation of trigonometric identities related to cosine cubes
  • Learn about the application of De Moivre's Theorem in solving trigonometric equations
  • Explore advanced topics in polynomial roots and their relationships with trigonometric functions
  • Study the implications of symmetry in trigonometric functions for angle evaluations
USEFUL FOR

Mathematicians, students studying trigonometry, and anyone interested in solving complex trigonometric expressions will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\cos^3 \left(\frac{2\pi}{7}\right)+\cos^3 \left(\frac{4\pi}{7}\right)+\cos^3 \left(\frac{8\pi}{7}\right).$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution::)

1. kaliprasad
2. MarkFL

Solution from MarkFL:
Let:

$$S=\cos^3\left(\frac{2\pi}{7}\right)+\cos^3\left(\frac{4\pi}{7}\right)+\cos^3\left(\frac{8\pi}{7}\right)$$

Now, if we use the power reductions formula:

$$\cos^3(A)=\frac{3\cos(A)+\cos(3A)}{4}$$

We may write:

$$4S=3\left(\cos\left(\frac{2\pi}{7}\right)+\cos\left(\frac{4\pi}{7}\right)+\cos\left(\frac{8\pi}{7}\right)\right)+\left(\cos\left(\frac{6\pi}{7}\right)+\cos\left(\frac{12\pi}{7}\right)+\cos\left(\frac{24\pi}{7}\right)\right)$$

Using:

$$\cos\left(\frac{6\pi}{7}\right)=\cos\left(\frac{8\pi}{7}\right)$$

$$\cos\left(\frac{12\pi}{7}\right)=\cos\left(\frac{2\pi}{7}\right)$$

$$\cos\left(\frac{24\pi}{7}\right)=\cos\left(\frac{4\pi}{7}\right)$$

We may now state:

$$S=\cos\left(\frac{2\pi}{7}\right)+\cos\left(\frac{4\pi}{7}\right)+\cos\left(\frac{8\pi}{7}\right)$$

Let:

$$r=\cos\left(\frac{2\pi}{7}\right)+i\sin\left(\frac{2\pi}{7}\right)$$

Now, consider the quadratic in $x$ with the following roots:

$$x_1=r+r^2+r^4$$

$$x_2=r^3+r^5+r^6$$

The sum of these roots is:

$$x_1+x_2=(1+r+r^2+r^3+r^4+r^5+r^6) - 1=\frac{1-r^7}{1-r}-1=-1$$

The product of the roots is:

$$x_1x_2=r^4+r^5+r^6+3r^7+r^8+r^9+r^10=1+r+r^2+r^3+r^4+r^5+r^6 + 2=2$$

Hence, our quadratic is:

$$x^2+x+2=0$$

And it's roots are:

$$x=\frac{-1\pm i\sqrt{7}}{2}$$

With:

$$x_1=r+r^2+r^4$$

We then see we must have:

$$S=-\frac{1}{2}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K