Solution to #1.
a) Prove ##(e+x)^{e-x}>(e-x)^{e+x}## for ##0<x<e.##
We define
$$f\, : \,]0,e[ \longrightarrow \mathbb{R}\, , \,f(x):=(e-x)\log(e+x)-(e+x)\log(e-x)$$
and observe ##\lim_{x \searrow 0}f(x)=0\,.## Then
\begin{align*}
f\,'(x)&=\dfrac{e-x}{e+x}+\dfrac{e+x}{e-x}-\left(\log(e+x)+\log(e-x)\right)\\[6pt]
&=2\cdot \underbrace{\dfrac{e^2+x^2}{e^2-x^2}}_{>1}-\underbrace{\log(e^2-x^2)}_{<2}\\[6pt]
&> 0
\end{align*}
and ##f(x)>0\,##, resp. ##(e-x)\log(e+x)>(e+x)\log(e-x)\,## resp. ##(e+x)^{e-x}>(e-x)^{e+x}##
b) Show that for ##0 < b < a## we have
$$\dfrac{1}{a} < \dfrac{2}{a+b} < \dfrac{\log (a) - \log (b)}{a-b} < \dfrac{1}{\sqrt{ab}} < \dfrac{1}{b}$$
For ##x=\dfrac{a}{b}>1## we have
\begin{align*}
\log(x^2)&=2 \log(x)\\
&=2 \int_1^x \frac{1}{t}\,dt\\
&< \int_1^x \left(1+\frac{1}{t^2}\right)\,dt\\
&= x-\frac{1}{x}\\
&\text{or}\\
\log(x)&<\sqrt{x}-\frac{1}{\sqrt{x}}
\end{align*}
With ##\log(x)=\sum_{k=0}^\infty \frac{2}{2k+1}\left(\dfrac{x-1}{x+1}\right)^{2k+1}> 2\cdot\dfrac{x-1}{x+1}## we get
$$
2\dfrac{\frac{a}{b}-1}{\frac{a}{b}+1}=2\dfrac{a-b}{a+b}< \log(\frac{a}{b})=\log(a)-\log(b)<\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}=\dfrac{a-b}{\sqrt{ab}}
$$
c) Let ##f,g\, : \,[a,b]\longrightarrow \mathbb{R}## be two monotone integrable functions, either both increasing or both decreasing. Show that ##\int_a^bf(x)g(x)\,dx \ge \int_a^bf(x)\,dx \cdot \int_a^bg(x)\,dx##
We have ##\left(f(x)-f(y)\right)\left(g(x)-g(y)\right)>0## and therefore
\begin{align*}
\int_a^bf(x)g(x)\,dx +\int_a^bf(y)g(y)\,dy &\ge \\ \int_a^bf(x)\,dx \, \int_a^bg(y)\,dy &+ \int_a^bf(y)\,dy \, \int_a^bg(x)\,dx\\
&\text{or} \\
2 \int_a^bf(x)g(x)\,dx &\ge 2\int_a^bf(x)\,dx \, \int_a^bg(x)\,dx
\end{align*}