MHB Can You Solve These Two Difficult Integrals?

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integrals
AI Thread Summary
The discussion revolves around solving two challenging integrals, with a focus on proving specific identities involving logarithmic functions and zeta values. The first integral, \(\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx\), is shown to equal \(\zeta(3)-\frac{\pi^2}{4}\log(2)\) through a detailed reduction to an Euler sum and subsequent evaluations. The second integral, \(\int_0^1 \frac{\log(1+x^2)}{1+x}dx\), is stated to equal \(\frac{3}{4}\log^2(2) -\frac{\pi^2}{48}\). The discussion also touches on the importance of allowing sufficient time for responses to challenging problems before revealing solutions. Overall, the thread emphasizes advanced techniques in integral calculus and the relevance of zeta functions in mathematical proofs.
sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx=\zeta(3)-\frac{\pi^2}{4}\log(2)\]

\[\int_0^1 \frac{\log(1+x^2)}{1+x}dx=\frac{3}{4}\log^2(2) -\frac{\pi^2}{48}\]
 
Mathematics news on Phys.org
I think these kind of problems have gone out of fashion these days.

Anyway, here is my solution to (1).

Problem 1

Step 1 - Reduction to Euler Sum

\[
\begin{aligned}
\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}\int_0^1 \frac{x^n \log(x)}{1-x}dx \\
&= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \left( H_n^{(2)}-\frac{\pi^2}{6}\right)
\\ &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}H_n^{(2)}-\frac{\pi^2}{6}\log(2)
\end{aligned}
\]

where \(\displaystyle H_n^{(2)} = \sum_{k=1}^n \frac{1}{n^2}\)

Step 2 - Evaluation of Euler Sum

The evaluation of the Euler Sum is tricky.

Note that

\(\displaystyle \int_0^1 (-r)^{n-1} \ dr = \frac{(-1)^{n+1}}{n}\) and
\(\displaystyle \int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt = \frac{1}{k^2}\)

Plugging these into the sum, we obtain

\[
\begin{aligned}
\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}H_n^{(2)} &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}\sum_{k=1}^n \frac{1}{k^2} \\
&= \sum_{n=1}^\infty \sum_{k=1}^n \int_0^1 (-r)^{n-1} \ dr \int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt \\
&= \sum_{k=1}^\infty \int_0^1 \left( \sum_{n=k}^\infty (-r)^{n-1} \right)dr \int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt \\
&= \sum_{k=1}^\infty \int_0^1 \frac{(-r)^{k-1}}{1+r}dr\int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt \\
&= \int_0^1 \int_0^1 \int_0^1 \frac{1}{(1+r)(1+rst)}dr \ ds \ dt \\
&= \int_0^1 \int_0^1 \frac{\log(1+rs)}{(1+r)(rs)}ds \ dr \\
&=-\int_0^1 \frac{\text{Li}_2(-r)}{(1+r)r}dr \\
&=\int_0^1 \text{Li}_2(-r) \left(\frac{1}{1+r}-\frac{1}{r} \right)dr \\
&= -\log(2)\frac{\zeta(2)}{2}+\int_0^1 \frac{\log^2(1+r)}{r}dr +\frac{\zeta(3)}{4} \\ &= \zeta(3)-\frac{\zeta(2) \log(2)}{2}
\end{aligned}
\]

Step 3 - Now, the combination of these efforts results in

\[\begin{aligned}\int_0^1 \frac{\log(x) \log(1+x)}{1-x}dx &= \left( \zeta(3)-\frac{\zeta(2) \log(2)}{2}\right) - \frac{\pi^2}{6}\log(2) \\ &= \zeta(3)-\frac{\pi^2}{12}\log(2)-\frac{\pi^2}{6}\log(2) \\ &= \zeta(3)-\frac{\pi^2}{4}\log(2)\end{aligned}\]
 
According to our suggested guidelines for posting challenge problems posted here:

http://www.mathhelpboards.com/f28/guidelines-posting-answering-challenging-problem-puzzle-3875/

we ask that our members be given at least a week to respond before posting the solution(s). This gives people a good chance to respond if they have a solution. (Sun)
 
MarkFL said:
According to our suggested guidelines for posting challenge problems posted here:

http://www.mathhelpboards.com/f28/guidelines-posting-answering-challenging-problem-puzzle-3875/

we ask that our members be given at least a week to respond before posting the solution(s). This gives people a good chance to respond if they have a solution. (Sun)

I am sorry.:D I thought it would be nice to give some ideas on Euler Sums first.

Anyway, if it is against the rules I shall not post a solution so early.
 
Well, I wouldn't say the guidelines are as strict as rules, but when you post a challenging problem, it is best to give people a reasonable amount of time in which to respond. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top