Can You Solve These Two Difficult Integrals?

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary

Discussion Overview

The discussion revolves around two challenging integrals involving logarithmic functions and their evaluations. Participants explore various methods for solving these integrals, including the use of Euler sums and series expansions. The conversation also touches on community guidelines regarding the posting of solutions to challenge problems.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Post 1 presents two integrals and claims specific evaluations for each.
  • Post 2 outlines a detailed solution to the first integral, involving a reduction to an Euler sum and subsequent evaluations, leading to a proposed result.
  • Post 3 and Post 4 emphasize community guidelines that suggest allowing time for responses before posting solutions to challenge problems.
  • Post 5 comments on the flexibility of the guidelines, suggesting that while they are not strict rules, it is courteous to allow time for responses.

Areas of Agreement / Disagreement

There is no consensus on the evaluations of the integrals, as participants have differing views on the appropriateness of posting solutions and the adherence to community guidelines. The mathematical claims remain contested, and the discussion reflects a mix of proposed solutions and procedural considerations.

Contextual Notes

The discussion includes references to specific mathematical techniques and community norms, but does not resolve the mathematical evaluations of the integrals presented.

sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx=\zeta(3)-\frac{\pi^2}{4}\log(2)\]

\[\int_0^1 \frac{\log(1+x^2)}{1+x}dx=\frac{3}{4}\log^2(2) -\frac{\pi^2}{48}\]
 
Physics news on Phys.org
I think these kind of problems have gone out of fashion these days.

Anyway, here is my solution to (1).

Problem 1

Step 1 - Reduction to Euler Sum

\[
\begin{aligned}
\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}\int_0^1 \frac{x^n \log(x)}{1-x}dx \\
&= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \left( H_n^{(2)}-\frac{\pi^2}{6}\right)
\\ &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}H_n^{(2)}-\frac{\pi^2}{6}\log(2)
\end{aligned}
\]

where \(\displaystyle H_n^{(2)} = \sum_{k=1}^n \frac{1}{n^2}\)

Step 2 - Evaluation of Euler Sum

The evaluation of the Euler Sum is tricky.

Note that

\(\displaystyle \int_0^1 (-r)^{n-1} \ dr = \frac{(-1)^{n+1}}{n}\) and
\(\displaystyle \int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt = \frac{1}{k^2}\)

Plugging these into the sum, we obtain

\[
\begin{aligned}
\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}H_n^{(2)} &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}\sum_{k=1}^n \frac{1}{k^2} \\
&= \sum_{n=1}^\infty \sum_{k=1}^n \int_0^1 (-r)^{n-1} \ dr \int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt \\
&= \sum_{k=1}^\infty \int_0^1 \left( \sum_{n=k}^\infty (-r)^{n-1} \right)dr \int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt \\
&= \sum_{k=1}^\infty \int_0^1 \frac{(-r)^{k-1}}{1+r}dr\int_0^1 \int_0^1 (s t)^{k-1} \ ds \ dt \\
&= \int_0^1 \int_0^1 \int_0^1 \frac{1}{(1+r)(1+rst)}dr \ ds \ dt \\
&= \int_0^1 \int_0^1 \frac{\log(1+rs)}{(1+r)(rs)}ds \ dr \\
&=-\int_0^1 \frac{\text{Li}_2(-r)}{(1+r)r}dr \\
&=\int_0^1 \text{Li}_2(-r) \left(\frac{1}{1+r}-\frac{1}{r} \right)dr \\
&= -\log(2)\frac{\zeta(2)}{2}+\int_0^1 \frac{\log^2(1+r)}{r}dr +\frac{\zeta(3)}{4} \\ &= \zeta(3)-\frac{\zeta(2) \log(2)}{2}
\end{aligned}
\]

Step 3 - Now, the combination of these efforts results in

\[\begin{aligned}\int_0^1 \frac{\log(x) \log(1+x)}{1-x}dx &= \left( \zeta(3)-\frac{\zeta(2) \log(2)}{2}\right) - \frac{\pi^2}{6}\log(2) \\ &= \zeta(3)-\frac{\pi^2}{12}\log(2)-\frac{\pi^2}{6}\log(2) \\ &= \zeta(3)-\frac{\pi^2}{4}\log(2)\end{aligned}\]
 
According to our suggested guidelines for posting challenge problems posted here:

http://www.mathhelpboards.com/f28/guidelines-posting-answering-challenging-problem-puzzle-3875/

we ask that our members be given at least a week to respond before posting the solution(s). This gives people a good chance to respond if they have a solution. (Sun)
 
MarkFL said:
According to our suggested guidelines for posting challenge problems posted here:

http://www.mathhelpboards.com/f28/guidelines-posting-answering-challenging-problem-puzzle-3875/

we ask that our members be given at least a week to respond before posting the solution(s). This gives people a good chance to respond if they have a solution. (Sun)

I am sorry.:D I thought it would be nice to give some ideas on Euler Sums first.

Anyway, if it is against the rules I shall not post a solution so early.
 
Well, I wouldn't say the guidelines are as strict as rules, but when you post a challenging problem, it is best to give people a reasonable amount of time in which to respond. :D
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K