Can You Solve This Complex Quadratic Expression by Hand?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The discussion centers on evaluating the complex quadratic expression $$\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor$$ without a calculator. A previous error regarding the sign of one term in the expression was acknowledged, which rendered the earlier version of the problem unsolvable. The author has extended the solving period for the previous problem by 48 hours to accommodate participants.

PREREQUISITES
  • Understanding of quadratic expressions
  • Familiarity with square roots and their properties
  • Knowledge of the floor function in mathematics
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Research techniques for evaluating complex algebraic expressions
  • Learn about the properties of the floor function in mathematical expressions
  • Study methods for solving quadratic equations by hand
  • Explore advanced algebraic manipulation techniques
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in solving complex algebraic problems and improving their problem-solving skills.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}\right\rfloor$$ without using a calculator.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi all!

There is a glaring error about the sign of one of the terms that makes last week High School POTW unsolvable which I accidentally overlooked it.:(

It should read:

Evaluate $$\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor$$ without using a calculator.I will hence extend the period of time to solve for last week High School POTW for another 48 hours.

I want to apologize for making the mistake and I want to assure you that it will never happen again.
 
No one answered last week problem.:(

Here's my solution:

$$\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)$$

$$=\frac{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}{\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}$$

$$=\frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}$$

By the Cauchy-Schwarz inequality, we have:

$$\begin{align*}\sqrt{2}+\sqrt{3}+\sqrt{6}&<\sqrt{1+1+1}\sqrt{2+3+6}\\&=\sqrt{33}\end{align*}$$

Hence $$\frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}>\frac{23}{\sqrt{33}}$$.

From $528<529$ we get, after taking the square root on both sides and rearranging:

$4<\dfrac{23}{\sqrt{33}}$

$\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}>\dfrac{23}{\sqrt{33}}>4$

On the other hand,

[TABLE="class: grid, width: 800"]
[TR]
[TD]From $50>49$, we get:

$\sqrt{2}>\dfrac{7}{5}$[/TD]
[TD]From $12>9$, we get:

$\sqrt{3}>\dfrac{3}{2}$[/TD]
[TD]From $6>4$, we get:

$\sqrt{6}>2$[/TD]
[TD]Adding them up gives:

$\sqrt{2}+\sqrt{3}+\sqrt{6}>4.9$[/TD]
[/TR]
[/TABLE]

$\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}<\dfrac{23}{4.9}=4.69$.

We can conclude by now that $$\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor=4.$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K