MHB Can You Solve This Complex Radical Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion centers around solving the complex radical equation given by the problem of the week (POTW). Participants are tasked with finding the solution to the equation involving square roots and a polynomial expression. Opalg successfully provides a correct solution, which is highlighted in the thread. The equation combines elements of algebra and radical expressions, showcasing the challenge posed to the participants. The thread emphasizes problem-solving skills in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Solve the equation $\dfrac{7}{\sqrt{x^2-10x+26}+\sqrt{x^2-10x+29}+\sqrt{x^2-10x+41}}=x^4-9x^3+16x^2+15x+26$

-----

 
Physics news on Phys.org
Congratulations to Opalg (Cool) for his correct solution, which you can find below:

Solution from Opalg:
Since $x^2-10x + 26 = (x-5)^2 + 1$, $x^2-10x + 29 = (x-5)^2 + 4$ and $x^2-10x + 41 = (x-5)^2 + 16$, it seems natural to wite the right side of the equation in terms of $x-5$: $$\begin{aligned} x^4-9x^3+16x^2+15x+26 &= (x-5)(x^3 - 4x^2 - 4x -5) + 1 \\ &= (x-5)^2(x^2 + x + 1) + 1. \end{aligned}$$ Therefore $\dfrac{7}{\sqrt{x^2-10x+26}+\sqrt{x^2-10x+29}+\sqrt{x^2-10x+41}}=x^4-9x^3+16x^2+15x+26$ can be written as $$\dfrac{7}{\sqrt{ (x-5)^2 + 1}+\sqrt{ (x-5)^2 + 4}+\sqrt{ (x-5)^2 + 16 }} = (x-5)^2(x^2 + x + 1) + 1.$$ If $x=5$ then both sides are equal to $1$. If $x\ne5$ then the left side is less than $1$ (because the denominator will be greater than $7$), and the right side is greater than $1$ (because $x^2+x+1$ is always positive). So $x=5$ is the only solution.