MHB Can You Solve This Week's Tricky Integral Problem?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The integral presented for evaluation is $$\int_0^1 \frac{t^{-1/2}(1-t)^{-1/4}}{(16 - 7t)^{5/4}}\, dt.$$ Despite the challenge, no participants provided solutions this week. The original poster has shared their own solution in the thread. Participants are encouraged to refer to the guidelines for submitting answers. Engaging with these problems can enhance integral calculus skills.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Evaluate the integral

$$\int_0^1 \frac{t^{-1/2}(1-t)^{-1/4}}{(16 - 7t)^{5/4}}\, dt.$$-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Breaking up the integral over $[0,1/2]$ and $[1/2,1]$, and using the inequalities $t \le 1 - t$ for $t\in [0,1/2]$ and $t \ge 1 - t$ for $t\in [1/2,1]$, we find that the integral is dominated by

$$M_1\int_0^{1/2}t^{-3/4}\, dt + M_2 \int_{1/2}^1 (1 - t)^{-3/4}\, dt$$

where $M_1$ and $M_2$ are the maxima of $(16 - 7t)^{-5/4}$ over $[0,1/2]$ and $[1/2,1]$, respectively. Since $\int_0^{1/2} t^{-5/4}\, dt = \int_{1/2}^1 (1 - t)^{-5/4}\, dt < \infty$, it follows that our integral converges.

The calculation turns out to

$$\frac{\sqrt{\pi}}{6}\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}$$

For let

$$u = \frac{9t}{16 - 7t}$$

Then $u = 0$ when $t = 0$ and $u = 1$ when $t = 1$. Furthermore,

$$t = \frac{16u}{9 + 7u},\qquad 1 - t = \frac{9(1 - u)}{9 + 7u},\qquad 16 - 7t = \frac{144}{9 + 7u},\qquad dt = \frac{144}{(9 + 7u)^2}\, du$$

and thus

$$\int_0^1 \frac{t^{-1/2}(1-t)^{-1/4}}{(16 - 7t)^{5/4}}\, dt = \int_0^1 \left[\frac{16u}{9 + 7u}\right]^{-1/2}\left[\frac{9(1-u)}{9+7u}\right]^{-1/4}\frac{(9+7u)^{5/4}}{144^{5/4}}\frac{144}{(9+7u)^2}\, du = 16^{-1/2}9^{-1/4}144^{-1/4}\int_0^1 u^{-1/2}(1-u)^{-1/4}$$
$$ = \frac{1}{24}B\left(\frac{1}{2},\frac{3}{4}\right)$$
$$=\frac{1}{24}\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{5}{4}\right)}$$
$$= \frac{1}{24}\frac{\sqrt{\pi}\Gamma\left(\frac{3}{4}\right)}{\frac{1}{4}\Gamma\left(\frac{1}{4}\right)}$$
$$= \frac{\sqrt{\pi}}{6}\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}$$
 

Similar threads