Laney5
- 5
- 0
Im looking for a general solution to the following equation but i can't seem to get an answer.
3xdy = (ln(y^{6}) - 6lnx)ydx
I've got this far anyway..
\frac{3x}{y} dy = (ln(y^{6})-ln(x^{6})) dx
\frac{dy}{dx} = \frac{y}{3x} . 6ln\frac{y}{x}
\frac{dy}{dx} = \frac{y}{x} . 2ln\frac{y}{x}
Let z = \frac{y}{x}
\frac{dz}{dx} = (x\frac{dy}{dx} - y) / x^{2}
\frac{dz}{dx} = \frac{1}{x}(\frac{y}{x} . 2ln\frac{y}{x}) - \frac{y}{x^2}
z = \frac{y}{x} gives
\frac{dz}{dx} = \frac{1}{x}(2zlnz) - \frac{z}{x}
\frac{dz}{dx} = \frac{1}{x}(2zlnz-z)
\frac{dz}{2zlnz - z} = \frac{1}{x}dx
now I am stuck...??
3xdy = (ln(y^{6}) - 6lnx)ydx
I've got this far anyway..
\frac{3x}{y} dy = (ln(y^{6})-ln(x^{6})) dx
\frac{dy}{dx} = \frac{y}{3x} . 6ln\frac{y}{x}
\frac{dy}{dx} = \frac{y}{x} . 2ln\frac{y}{x}
Let z = \frac{y}{x}
\frac{dz}{dx} = (x\frac{dy}{dx} - y) / x^{2}
\frac{dz}{dx} = \frac{1}{x}(\frac{y}{x} . 2ln\frac{y}{x}) - \frac{y}{x^2}
z = \frac{y}{x} gives
\frac{dz}{dx} = \frac{1}{x}(2zlnz) - \frac{z}{x}
\frac{dz}{dx} = \frac{1}{x}(2zlnz-z)
\frac{dz}{2zlnz - z} = \frac{1}{x}dx
now I am stuck...??