MHB Categories - Bland Chapter 3 - Problem 1 - Problem Set 3.1

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Set
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am trying to understand Section 3.1 on Categories.

At present I am working on Problem 1 in Problem Set 3.1 and I need some help in understanding the problem and its solution.

Problem 1 (Problem Set 3.1) reads as follows:
View attachment 3599
Potential helpers on this problem will need to know Bland's definition of a category and his notation ... the definition reads as follows:View attachment 3600
View attachment 3601Thus for $$\mathscr{C}$$ we have that

$$\mathscr{O}$$ is the class of positive integers greater than or equal to $$2$$

and

the set of morphisms $$\text{Mor} (m,n)$$ is the set of $$m \times n$$ matrices over a commutative ring $$R$$
Now my problem concerns verifying and interpreting $$C1$$.
$$C1$$ requires that for all $$m, n \in \mathscr{O}$$ there is a (possibly empty) set $$\text{Mor} (m,n)$$ called the set of morphisms $$ f \ : \ m \rightarrow n$$ from $$m$$ to $$n$$ such that:

$$\text{Mor} (m,n) \cap \text{Mor} (s,t) = \emptyset \ \text{ if } \ (m,n) \ne (s,t)$$This of course is true since there is no common element between the set of $$m \times n$$ matrices and the set of $$s \times t$$ matrices when $$(m,n) \ne (s,t)$$... ... BUT ... what do we make of $$ f \ : \ m \rightarrow n$$? ... ... what does it represent? ... ... do we just ignore this as something that just does not fit the present case, or perhaps some formalism that does not matter?But then ... why does it not matter that there is no interpretation for $$ f \ : \ m \rightarrow n$$, that is no interpretation for $$f$$ ... ...I hope someone can clarify this (possibly simple) point.

Peter
 
Physics news on Phys.org
Hi Peter,

I think the natural way of interpreting this is seeing $f$ as a morphism from $R^{m}$ to $R^{n}$ using matrix multiplication.

$\begin{array}{cccc}f: & R^{m} & \longrightarrow & R^{n}\\ & x & \mapsto & Ax \end{array}$

where $A\in Mor(m,n)$
 
Fallen Angel said:
Hi Peter,

I think the natural way of interpreting this is seeing $f$ as a morphism from $R^{m}$ to $R^{n}$ using matrix multiplication.

$\begin{array}{cccc}f: & R^{m} & \longrightarrow & R^{n}\\ & x & \mapsto & Ax \end{array}$

where $A\in Mor(m,n)$
Well! ... ... that was really helpful Fallen Angel!

Thanks for that insight!

Appreciate your time and support!

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top