Hi,(adsbygoogle = window.adsbygoogle || []).push({});

If [tex] M^{\mu\nu} [/tex] are the generators of the Lorentz group, i.e. they obey

[tex] [M^{\mu\nu}, M^{\rho\sigma}]=i\hbar(g^{\mu\rho}M^{\nu\sigma}-g^{\nu\rho}M^{\mu\sigma})+.....(1)[/tex]

and [tex] L^{\mu\nu} [/tex] is defined by, [tex] L^{\mu\nu} := \frac{\hbar}{i} (x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu})[/tex]

I have found that L also obeys a similar commutation relation to the generators, namely:

[tex] [L^{\mu\nu}, L^{\rho\sigma}]\phi=i\hbar(g^{\mu\rho}L^{\nu\sigma}-g^{\nu\rho}L^{\mu\sigma})+......(2)[/tex]

I also know that [tex] [\phi(x),[M^{\mu\nu}, M^{\rho\sigma}]]=[L^{\mu\nu}, L^{\rho\sigma}]\phi(x) (3) [/tex]

I am now trying to solve a problem that asks to verify equation (1) upto a term on the RHS that commutes with [tex] \phi(x) [/tex] and its derivatives, by using equations 2 and 3. I have already proved equation 1 by other means, but no idea how to go about it this way. Apparently the term that might arise on RHS is called the central charge.

Just plugging things in takes me to:

[tex]\phi(x)[M^{\mu\nu}, M^{\rho\sigma}]-[M^{\mu\nu}, M^{\rho\sigma}]\phi(x)=i\hbar(g^{\mu\rho}L^{\nu\sigma}-g^{\nu\rho}L^{\mu\sigma})+...... [/tex]

I'm not sure where one would go from here to verify the generator equation, equation (1).

Thanks for any suggestions

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Central charge and Lorentz Algebra

Loading...

Similar Threads - Central charge Lorentz | Date |
---|---|

I Question about charge | Mar 14, 2018 |

I Free particle in a central potential | Apr 30, 2016 |

Angular momentum in the 3D Schrodinger eqn with a central force | Apr 13, 2014 |

The central mystery of quantum mechanics (according to Feynman) | Apr 11, 2014 |

**Physics Forums - The Fusion of Science and Community**