Centripetal acceleration of objects in orbit around the Earth

AI Thread Summary
Centripetal acceleration in orbit results from the balance between gravitational pull and the satellite's tangential velocity, which prevents it from falling to Earth. The acceleration due to gravity for satellites is approximately 8.5-9.5 m/s², but as they orbit, their "downward" direction changes continuously, maintaining a stable orbit. Each radial acceleration is countered by an equal and opposite acceleration, leading to no net change in radius or speed in circular motion. In elliptical orbits, gravitational effects can alter tangential speeds at different points. If air resistance were significant at orbital heights, it would cause the orbit to decay over time.
Love2teachPhys
Messages
4
Reaction score
1
Hi all. The answer to this might be trivial. If it is, sorry for posting. If you calculate the acceleration due to gravity of an orbiting satellite, it could be around 8.5-9.5m.s-2, depending. So, it's tangential velocity is such that as it falls towards earth, Earth curves away and the satellite never comes closer to Earth - here's my problem. If it's is accelerating towards Earth at say 9m.s-2, then every second it's downward velocity increases by 9m.s-1. If it continually accelerates in this way, eventually you have massive downward velocity, yet tangential velocity remains constant...the satellite should come crashing down. So, perhaps it's reached terminal downward velocity? But there's scant air resistance.. what gives?
 
Physics news on Phys.org
"downwards" is not a fixed direction. As the satellite moves along its orbital path, "downwards" now is different from "downwards" a moment ago and from "downwards" a moment from now. After 1/4 of a complete orbit, the new "downwards" acceleration is no longer adding velocity along the original direction at all.
 
Love2teachPhys said:
Hi all. The answer to this might be trivial. If it is, sorry for posting. If you calculate the acceleration due to gravity of an orbiting satellite, it could be around 8.5-9.5m.s-2, depending. So, it's tangential velocity is such that as it falls towards earth, Earth curves away and the satellite never comes closer to Earth - here's my problem. If it's is accelerating towards Earth at say 9m.s-2, then every second it's downward velocity increases by 9m.s-1. If it continually accelerates in this way, eventually you have massive downward velocity, yet tangential velocity remains constant...the satellite should come crashing down. So, perhaps it's reached terminal downward velocity? But there's scant air resistance.. what gives?

OK You realize it doesn't actually get any closer so there has to be an explanation. Try this:
If you realize that every time the satellite goes round once, the centripetal force has pointed in all possible radial directions, each instant of acceleration in one direction is balanced out by an instant, radially opposite acceleration, when it gets round there. So the net effect will be zero change in radius (or speed). As jbriggs has already pointed out, "downwards" really means radial.
The above only applies in the case of circular motion. If the orbit is elliptical (most / all are like this) the effect of g at any point will be to add to or subtract from the tangential speed (except at perigee and apogee, of course).

If there is any significant quantity of air at the orbital height, energy is continually lost through friction so the orbit will decay, catastrophically.
 
Hmm. Thanks for the quick replies. I like the explanation that the net radial acceleration is zero, as for every radial acceleration, there is an opposite equal in magnitude acceleration. Is there another way of explaining this, perhaps?
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top