Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading "Introduction to Ring Theory" by P. M. Cohn (Springer Undergraduate Mathematics Series)
In Chapter 2: Linear Algebras and Artinian Rings, on Page 61 we find a definition of a refinement of a chain and a definition of a composition series.
The relevant text on page 61 is as follows:View attachment 3181
In the above text, Cohn indicates that a refinement of a chain (added links) is a composition series for a module $$M$$, but then goes on to to characterise a composition series for a module $$M$$ as a chain in which $$C_r = M$$ for some positive integer $$r$$, and for which $$C_i/C_{i-1}$$ is a simple module for each $$i$$.
So then, is Cohn saying that if a refinement is not possible, then it follows that $$C_r =M$$ for some $$r$$ and $$C_i/C_{i-1}$$ is a simple module for each $$i$$? If so, why/how is this the case?
Peter
In Chapter 2: Linear Algebras and Artinian Rings, on Page 61 we find a definition of a refinement of a chain and a definition of a composition series.
The relevant text on page 61 is as follows:View attachment 3181
In the above text, Cohn indicates that a refinement of a chain (added links) is a composition series for a module $$M$$, but then goes on to to characterise a composition series for a module $$M$$ as a chain in which $$C_r = M$$ for some positive integer $$r$$, and for which $$C_i/C_{i-1}$$ is a simple module for each $$i$$.
So then, is Cohn saying that if a refinement is not possible, then it follows that $$C_r =M$$ for some $$r$$ and $$C_i/C_{i-1}$$ is a simple module for each $$i$$? If so, why/how is this the case?
Peter