MHB Chains of Modules and Composition Series

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Introduction to Ring Theory" by P. M. Cohn (Springer Undergraduate Mathematics Series)

In Chapter 2: Linear Algebras and Artinian Rings, on Page 61 we find a definition of a refinement of a chain and a definition of a composition series.

The relevant text on page 61 is as follows:View attachment 3181

In the above text, Cohn indicates that a refinement of a chain (added links) is a composition series for a module $$M$$, but then goes on to to characterise a composition series for a module $$M$$ as a chain in which $$C_r = M$$ for some positive integer $$r$$, and for which $$C_i/C_{i-1}$$ is a simple module for each $$i$$.

So then, is Cohn saying that if a refinement is not possible, then it follows that $$C_r =M$$ for some $$r$$ and $$C_i/C_{i-1}$$ is a simple module for each $$i$$? If so, why/how is this the case?

Peter
 
Physics news on Phys.org
Claim For any $R$-module $R$, and a maximal submodule $M$ of $R$, $R/M$ is simple

Since every submodule of an $R$ module is a module over an ideal of $R$, we can produce an ideal $I$ of $R$ such that $M$ is an $I$-module. Consider the canonical map $\varphi :R \to R/I$. For any submodule $N$ of $R/M$, we can produce an ideal $J$ of $R$ such that $N$ is a $J$-module. $\varphi^{-1}(J)$ contains $I$, but is a proper ideal of $R$. Hence the minimality of $I$ is contradicted, thus $R/I$ is simple, hence so is the $R/I$-module $R/M$. $\blacksquare$

Let $M$ be a module and $0 = M_0 \subset M_1 \subset M_2 \subset \, \cdots \, \subset M_{n - 1} \subset M_n = M$ be a composition series for $M$. By Cohn's definition, you see that this is a chain which can't be "expanded", i.e., $M_{i-1}$ is maximal in $M_i$. By the theorem above, the composition factors $M_i/M_{i-1}$ are simple. $\blacksquare$
 
Last edited:
mathbalarka said:
Claim For any $R$-module $R$, and a maximal submodule $M$ of $R$, $R/M$ is simple

Since every submodule of an $R$ module is a module over an ideal of $R$, we can produce an ideal $I$ of $R$ such that $M$ is an $I$-module. Consider the canonical map $\varphi :R \to R/I$. For any submodule $N$ of $R/M$, we can produce an ideal $J$ of $R$ such that $N$ is a $J$-module. $\varphi^{-1}(J)$ contains $I$, but is a proper ideal of $R$. Hence the minimality of $I$ is contradicted, thus $R/I$ is simple, hence so is the $R/I$-module $R/M$. $\blacksquare$

Let $M$ be a module and $0 = M_0 \subset M_1 \subset M_2 \subset \, \cdots \, \subset M_{n - 1} \subset M_n = M$ be a composition series for $M$. By Cohn's definition, you see that this is a chain which can't be "expanded", i.e., $M_{i-1}$ is maximal in $M_i$. By the theorem above, the composition factors $M_i/M_{i-1}$ are simple. $\blacksquare$

Hi Mathbalarka,

Thanks for the help!

In your post you write:" … …every submodule of an $R$ module is a module over an ideal of $R$, … … "

Can you give more details on this proposition … indeed can you show that this is the case … that is, prove that this is true … …

Would appreciate your help on this matter.

Peter
 
Peter said:
Hi Mathbalarka,

Thanks for the help!

In your post you write:" … …every submodule of an $R$ module is a module over an ideal of $R$, … … "

Can you give more details on this proposition … indeed can you show that this is the case … that is, prove that this is true … …

Would appreciate your help on this matter.

Peter
Hmm...let's see what we can do. Suppose $M$ is our (right) $R$-module, and $N$ our submodule. We need to somehow produce an ideal $I$ of $R$, so that $N$ is an $I$-module.

My first thought is to set:

$I = \{a \in R: na \in N,\ \forall n \in N\}$.

Does this work?

Suppose $a,b \in I$. Then for any $n \in N$, we have $na,nb \in N$. Since $N$ is an abelian group under the module addition of $M$, and thus closed under addition, we have $na + nb = n(a+b) \in N$. Since this is true of every $n \in N$, we have $a+b \in I$.

Note that if $a \in I$, then for any $n \in N$, we have $na \in N$ (since submodules are closed under the $R$-action), and since an abelian group contains all additive inverses, we have:

$-na = n(-a) \in N$, so that $-a \in I$ whenever $a \in I$. Thus $I$ is an additive subgroup of $R$.

Now suppose we have $r \in R$, and $a \in I$. Since $N$ is an $R$-submodule, it is closed under the (right) $R$-action, that is:

$n \in N \implies nr \in N$ for any $r \in R$.

So if $a \in I$, then for any $n \in N,\ na \in N$, and thus $(na)r = n(ar) \in N$, thus $ar \in I$.

This establishes that $I$ is at least a right ideal of $R$.

To see that $I$ is also a left ideal of $R$, note that if $n \in N$, then $nr \in N$ for any $r \in R$, whence (by the definition of $I$), $n(ra) = (nr)a \in N$, so that $ra \in I$, for any $r \in R$, and $a \in I$.

So $I$ is indeed a (two-sided) ideal of $R$.

So we have an ideal of $R$, now, and by the way we defined it, we see that the $I$-action on $N$ is just the $R$-action restricted to $I$. That it satisfies the rules:

$n(a+b) = na + nb$
$(n+n')a = na + n'a$ is clear because these hold for any $n,n' \in N$ and $a,b \in R$.

Similarly, the property:

$(na)b = n(ab)$ is also inherited from the $R$-module structure of $M$.

So the only "real" thing to verify, is that we have closure (of addition, and scalar multiplication). The first follows from the fact that $N$ is an additive subgroup of $M$. The second follows from the way we defined $I$.

A similar proof holds if we take $M$ to be a left $R$-module.

I've never seen this proved before, I just "made it up as I went along". In other words, it just sort of "flows" from the definitions.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top