Change in apparent magnitude of a star after exploding

Click For Summary
SUMMARY

The apparent magnitude of a star after it explodes as a supernova can be calculated using the formula -2.5log(10^9), which derives from the relationship between absolute magnitude and luminosity. In this case, the absolute magnitude of the star in the Andromeda galaxy is M=5, and the distance is 690 kpc. The increase in brightness by a factor of one billion results in a change in apparent magnitude of -22.5, calculated as -2.5 * log(10^9).

PREREQUISITES
  • Understanding of absolute and apparent magnitude in astronomy
  • Familiarity with logarithmic calculations
  • Knowledge of supernova phenomena
  • Basic concepts of luminosity and distance in astrophysics
NEXT STEPS
  • Research the relationship between luminosity and absolute magnitude in detail
  • Learn about the different types of supernovae and their characteristics
  • Explore the implications of brightness changes in astronomical objects
  • Study the use of logarithmic scales in scientific measurements
USEFUL FOR

Astronomy students, astrophysicists, and anyone interested in understanding the effects of supernova explosions on stellar brightness and magnitude calculations.

MatinSAR
Messages
673
Reaction score
204
Homework Statement
The absolute magnitude of a star in the Andromeda galaxy (distance 690 kpc) is M=5. It explodes as a supernova, becoming one billion (10^9) times brighter. What is its apparent magnitude?
Relevant Equations
Absolute and appaarent magnitude.
Finding the apparent magnitude before the explosion is straightforward and easy.$$m= M + 5log(\dfrac {d}{10}) = 29.19$$ Idk how to find it after explosion ... The change in apparent magnitude should be calculated using ##-2.5log(10^9)## , Idk why this formula is true and where it came from ...
 
Physics news on Phys.org
MatinSAR said:
Homework Statement: The absolute magnitude of a star in the Andromeda galaxy (distance 690 kpc) is M=5. It explodes as a supernova, becoming one billion (10^9) times brighter. What is its apparent magnitude?
Relevant Equations: Absolute and appaarent magnitude.

Finding the apparent magnitude before the explosion is straightforward and easy.$$m= M + 5log(\dfrac {d}{10}) = 29.19$$ Idk how to find it after explosion ... The change in apparent magnitude should be calculated using ##-2.5log(10^9)## , Idk why this formula is true and where it came from ...
I see a matching formula at https://en.wikipedia.org/wiki/Absolute_magnitude#Bolometric_magnitude
 
  • Like
Likes   Reactions: MatinSAR
Absolute magnitude is defined as ##M = -2.5 \log(L/L_0)##. If your object becomes ##10^9## brighter, that means ##L## increases by a factor ##10^9## and therefore ##M## changes by ##-2.5\log(10^9) = - 2.5\cdot 9 = - 22.5##
 
Last edited:
  • Like
Likes   Reactions: MatinSAR and SammyS
haruspex said:
Thank you for your time.
Orodruin said:
Absolute magnitude is defined as ##M = -2.5 \log(L/L_0)##. If your object becomes ##10^9## brighter, that means ##L## increases by a factor ##10^9## and therefore ##M## increases by ##-2.5\log(10^9) = - 2.5\cdot 9 = - 22.5##
Thank you for your clear explanation.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K