Change of coordinate/Reflection Linear Algebra Problem

Click For Summary
The discussion revolves around finding the reflection transformation T(x,y) in R^2 about the line y=mx. The user attempts to establish the transformation by considering the properties of reflection and the relationship between the line and its orthogonal counterpart. They express confusion regarding the choice of ordered bases B and B' for the transformation, particularly in determining the change of coordinate matrix Q. The user seeks clarification on how to derive the transformation matrix and expresses uncertainty about their approach, ultimately referencing a solution from their textbook. The conversation highlights the need for a systematic method involving rotation and reflection to derive the correct transformation.
quasar_4
Messages
273
Reaction score
0
Change of coordinate/Reflection Linear Algebra Problem!

Homework Statement


Hi everyone, so here I am yet again :blushing:.

In R^2 let L be the line y=mx, where m is not zero. Find an expression for T(x,y) where T is the reflection of R^2 about L.

Homework Equations



A transformation that reflects about the x-axis is given by T(x,y) = (x, -y) while one about the y-axis is T(x,y)=(-x,y).
The change of coordinate matrix Q is given by x'_j = (summation) (Q_ij) (x_i)
(sorry, not sure how to add symbols into these windows), and we probably also need the relationship that the matrix representation of [T]_B' = Q^-1*[T]_B*Q where B' and B are ordered bases for R^2.

Also, the equation of a line in slope-intercept form is y = mx + b. A line orthogonal to this would be y = - x/m +b.

The Attempt at a Solution



I know that if we are talking about reflection about a line L with slope m, that reflection will occur for lines orthogonal to L with slope -1/m. I thought that I could set it up as follows:

For any ordered pair (x,y) on L, let T(x,y) = (x,y) since the line itself is invariant under transformation. Then consider some (-x,y) on a line L' that is perpendicular to L (it could've been (x, -y), but it there is no loss of generality with what I have). For T(-x,y) = -(-x, y) = (x, -y).

If we let B be the standard ordered basis for R^2, we can let B' = {(1,1),(-1,1)}. Then we get the change of coordinate matrix (noted here as columns) Q = ((1 1) (1 -1)}, and Q^-1 = {(-1 -1) (-1 1)}.

For [T]_B we have ((1 0) (0,-1)}. Then it is easy to find [T]_B' = Q^-1*[T]_B*Q.

From that answer, which should be a 2*2 matrix, it appears that T is left multiplication by [T]_B. Thus for any (x,y) in R^2 I can say

T(x,y) = [T]_B*((x) (y)) = some set of equations.

Basically, I am lost at the beginning point where I need to decide what B' and Q are. Once I get those, I think the rest of this will work. I kind of just guessed by saying that B'={(1,1),(-1,1)} -- I'm just not sure how to get this step to work.

Or should my B' be something more like (x,y), (-x,y) with x and y in it? I am very confused about how to find a B'.

For reference, the answer in the back of my books is:

T(x,y) = (1/m^2)*((1-m^2)x + 2my, 2mx + (m^2 -1)y). I have NO idea how this ordered pair is supposed to emerge. :bugeye: Maybe my entire method is wrong. Can anyone help?
 
Physics news on Phys.org
Did you try rotating by an angle -\theta so that the line goes to an axis (say x-axis), followed by reflection, followed by rotating back by \theta? This amounts to a matrix product.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K