Characterizing subgroups of a cyclic group

  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Cyclic Group
Click For Summary
SUMMARY

This discussion focuses on the characterization of subgroups within cyclic groups, specifically proving that for any subgroup H of a cyclic group G, the relationship H = ⟨g^{|G|/|H|}⟩ holds true. Participants analyze the equality of orders between H and the generated subgroup, concluding that if two subgroups have the same order, they must be identical. The proof involves understanding the order of elements and the properties of cyclic groups, ultimately demonstrating that H is indeed equal to the subgroup generated by g raised to the appropriate power.

PREREQUISITES
  • Cyclic group theory
  • Understanding of subgroup properties
  • Knowledge of group orders and generators
  • Familiarity with notation in group theory
NEXT STEPS
  • Study the properties of cyclic groups in detail
  • Learn about subgroup generation and orders in group theory
  • Explore the implications of Lagrange's theorem in cyclic groups
  • Investigate the notation and structure of groups, including relations
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in group theory, particularly those studying cyclic groups and their subgroups.

Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Show that for every subgroup ##H## of cyclic group ##G##, ##H = \langle g^{\frac{|G|}{|H|}}\rangle##.

Homework Equations

The Attempt at a Solution


At the moment the most I can see is that ##|H| = |\langle g^{\frac{|G|}{|H|}}\rangle|##. This is because if ##(g^{\frac{|G|}{|H|}})^p = e## for some value of ##p < |H|##, we would have that ##g^q = e## for some ##q < |G|##, which is a contradiction.

But I'm not seeing why they must be the same subgroup. I was going to try to prove that if two subgroups of cyclic group have the same order, then they must be the same group. If I did this I think I would first need to prove that every subgroup of a cyclic group is cyclic.
 
Last edited:
Physics news on Phys.org
Mr Davis 97 said:

Homework Statement


Show that for every subgroup ##H## of cyclic group ##G##, ##H = \langle g^{\frac{|G|}{|H|}}\rangle##.

Homework Equations

The Attempt at a Solution


At the moment the most I can see is that ##|H| = |\langle g^{\frac{|G|}{|H|}}\rangle|##. This is because if ##(g^{\frac{|G|}{|H|}})^p = e## for some value of ##p < |H|##, we would have that ##g^q = e## for some ##q < |G|##, which is a contradiction.

But I'm not seeing why they must be the same subgroup. I was going to try to prove that if two subgroups of cyclic group have the same order, then they must be the same group, but I think that's basically what I'm already trying to prove
Haven't you done this already?
Mr Davis 97 said:
Don't they not generate the group because they have a different order than the generator ##g##, since ##|g^k| = \frac{n}{\operatorname{gcd} (k,n)}##?
With ##|G|=n## and ##k=|H|## we have ##k\,|\,n##, say ##n=k\cdot m## and we are interested in the order of ##g^m##. Now apply your formula.
 
fresh_42 said:
Haven't you done this already?

With ##|G|=n## and ##k=|H|## we have ##k\,|\,n##, say ##n=k\cdot m## and we are interested in the order of ##g^m##. Now apply your formula.
Well what we have is that ##|\langle g^{\frac{|G|}{|H|}} \rangle| = |g^{\frac{n}{k}}| = |g^m| = \frac{n}{\gcd (m,n)} = \frac{mk}{\gcd (m,mk)}= \frac{mk}{m} = k = |H|##. So now I have that the orders are equal. But how I should I go about showing that they are the same group?
 
Mr Davis 97 said:
Well what we have is that ##|\langle g^{\frac{|G|}{|H|}} \rangle| = |g^{\frac{n}{k}}| = |g^m| = \frac{n}{\gcd (m,n)} = \frac{mk}{\gcd (m,mk)}= \frac{mk}{m} = k = |H|##. So now I have that the orders are equal. But how I should I go about showing that they are the same group?
Let ##H':=\langle \,g^m\,|\,g^n=1\, , \,n=mk \,\rangle## and ##g^l \in H##. Now what does the last property mean, if we only know that ##|H|=k\,?##
 
fresh_42 said:
Let ##H':=\langle \,g^m\,|\,g^n=1\, , \,n=mk \,\rangle## and ##g^l \in H##. Now what does the last property mean, if we only know that ##|H|=k\,?##
All I can see is that if ##g^l \in H##, then ##g^{lk} = 1##, and so ##n ~|~ lk##.
 
Mr Davis 97 said:
All I can see is that if ##g^l \in H##, then ##g^{lk} = 1##, and so ##n ~|~ lk##.
Or ##lk=a\cdot n = amk## ...
 
fresh_42 said:
Or ##lk=a\cdot n = amk## ...
Is the point that since ##l = am##, we then know that ##g^l = (g^m)^a##, so ##g^l \in H'##?
 
Mr Davis 97 said:
Is the point that since ##l = am##, we then know that ##g^l = (g^m)^a##, so ##g^l \in H'##?
Yes, and this is true for all elements of ##H## since we didn't set any conditions on the element - don't forget that ##|H'|=k=|H|##.
 
fresh_42 said:
Yes, and this is true for all elements of ##H## since we didn't set any conditions on the element - don't forget that ##|H'|=k=|H|##.
So since ##H \le H'## and ##|H| = |H'|##, we have ##H = H'##?

Could you explain a little bit why ##\langle g^{\frac{n}{k}}\rangle = \langle g^m~|~g^n=1, n = mk \rangle##? And also what the notation on the RHS means exactly.
 
  • #10
Mr Davis 97 said:
So since ##H \le H'## and ##|H| = |H'|##, we have ##H = H'##?
Yes.
Could you explain a little bit why ##\langle g^{\frac{n}{k}}\rangle = \langle g^m~|~g^n=1, n = mk \rangle##? And also what the notation on the RHS means exactly.
##\langle g^{\frac{n}{k}}\rangle = \langle g^m \rangle## by the definitions of ##k,m,n##

However, this notation is strictly seen not the group we deal with, because here ##g## would be of infinite order as the order isn't mentioned. The correct way to write this group is ##\langle g^{\frac{n}{k}}\rangle = \langle g^m~|~g^n=1, n = mk \rangle##, because it lists all relevant data. In general the notation is
$$
G = \langle \, g_1, \ldots ,g_n \,|\, r_1,\ldots ,r_m \,\rangle \text{ or } G = \langle \, g_1, \ldots ,g_n \,|\, r_1=\ldots =r_m=1 \,\rangle
$$
where the ##g_i## are generators of the group, possibly infinitely many, and ##r_j## are the relations, i.e. words built over the alphabet ##g_i## which equal ##1##. The relation, in our case only one, namely ##r_1=g^n=1##, makes the group cyclic and finite. ##n=mk## could have been omitted so that ##H=\langle \,g^m\,|\,g^{mk}\,\rangle## fits the just defined notation. ##r_j=1## is usually omitted, as the position behind ##"|"## indicates that it is a relation, so they are simply listed.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
2K
Replies
5
Views
3K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K