- #1

rtareen

- 162

- 32

I attached a screenshot of the book (sorry no pdf available for this book). Right above the somewhat central line they give the theorem that if there are m currents and n nodes, then there will be n - 1 independent equations from the current law and m - n - 1 from the voltage law.

I count 4 (branching) nodes and 6 currents. So the number of equations given by the current law is 4 - 1 = 3. Thats fine. But then we should get one more (6- 4 - 1) from the voltage law. But they end up with three more from the voltage law leading to a total of six equations, which they will need because there are six unknown currents.

So what's going on here?

I count 4 (branching) nodes and 6 currents. So the number of equations given by the current law is 4 - 1 = 3. Thats fine. But then we should get one more (6- 4 - 1) from the voltage law. But they end up with three more from the voltage law leading to a total of six equations, which they will need because there are six unknown currents.

So what's going on here?