Circuit with potential difference across battery being zero?

Click For Summary
SUMMARY

The discussion centers on analyzing a circuit where the potential difference across a battery can become zero. Using Kirchhoff's Voltage Law (KVL), the equation derived is ##i=\frac{\epsilon_2-\epsilon_1}{R}##, indicating that current flows counterclockwise when ##\epsilon_2>\epsilon_1##. The conversation highlights that as current flows, it reduces the electromotive force (emf) of battery 1, leading to a potential scenario where ##\epsilon_1## approaches zero. The internal resistance of the battery plays a crucial role in this dynamic, affecting the current flow and potential difference across the battery terminals.

PREREQUISITES
  • Understanding of Kirchhoff's Voltage Law (KVL)
  • Familiarity with electromotive force (emf) concepts
  • Knowledge of battery chemistry and internal resistance
  • Basic circuit analysis skills
NEXT STEPS
  • Study the effects of internal resistance in batteries
  • Learn about rechargeable battery charging mechanisms
  • Explore advanced circuit analysis techniques involving KVL
  • Investigate the relationship between current flow and battery chemistry
USEFUL FOR

Electrical engineers, physics students, and anyone interested in circuit analysis and battery behavior will benefit from this discussion.

zenterix
Messages
774
Reaction score
84
Homework Statement
Can one construct a circuit such that the potential difference across the terminals of a battery is zero?
Relevant Equations
The first circuit I thought about was something like the following
1708367087570.png


Using KVL we have ##\epsilon_1-\epsilon_2+iR=0##.

It seems that ##\epsilon_1,\epsilon_2##, and ##R## are given and the only variable is ##i##.

Thus, ##i=\frac{\epsilon_2-\epsilon_1}{R}## for the KVL equation to be true.

However, it seems like when we think about what happens to this circuit in time, ##\epsilon_1## seems to be a variable as well.

Suppose ##\epsilon_2>\epsilon_1##. Then current flows counterclockwise. It seems that this current would undo the chemical reactions inside of battery 1 and reduce its electromotive force.

The more ##\epsilon_1## decreases, the higher the current. Does this mean the reduction of ##\epsilon_1## speeds up as the process occurs?

How long would this happen for?

I imagine that zero is the lowest that ##\epsilon_1## can go, since when this happens battery 1 is acting like a short and ##i=\frac{\epsilon_2}{R}##.

Actually, the first circuit I thought of didn't have the resistor ##R## in it.

##R## can be thought of as an internal resistance of battery 1.

If this resistance were not there (and I guess this is not a realistic scenario), then my guess is that the emf of battery 1 would go to zero instantly and the flow of current would be, well, infinity.

But the resistance is there, and after ##\epsilon_1## goes to zero, ##R## represents the resistance of the current flowing through that battery. There is, however, a difference of potential across the resistor.

Since we are thinking of this resistance as actually being part of the battery, then it seems that what happens is that in the end, the difference of potential across battery 1 (including the resistance) actually stays the same at ##\epsilon_2##, but now the entire potential difference is across the resistor.

I'm not sure what to make of this last statement yet.
 
Physics news on Phys.org
As I think you understand, the circuit will require a very stout coppr bar and a "perfact" battery would supply very large current. As you rightly suspect this will be limited by the reaction rates in the battery (modeled as an interrnal resistance of the battery)
 
hutchphd said:
As you rightly suspect this will be limited by the reaction rates in the battery (modeled as an interrnal resistance of the battery)
Would that not be a resistance inside the battery, not a short, which means non-zero potential difference across the battery terminals?
 
zenterix said:
Homework Statement: Can one construct a circuit such that the potential difference across the terminals of a battery is zero?
Relevant Equations: The first circuit I thought about was something like the following

Suppose ϵ2>ϵ1. Then current flows counterclockwise. It seems that this current would undo the chemical reactions inside of battery 1 and reduce its electromotive force.
I don't know why you think this will happen? This depends on the exact battery chemistry, but at least with rechargeable batteries, this will charge the battery with the lower electromotive force, and it will raise its emf until the emfs of the batteries are the same. If R is large enough, this won't set anything on fire.
 

Similar threads

Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K