MHB Closed and Bounded Intervals are Compact .... Sohrab, Propostion 4.1.9 .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Closed and Bounded Intervals are Compact ... Sohrab, Proposition 4.1.9 ... ...

I am reading Houshang H. Sohrab's book: "Basic Real Analysis" (Second Edition).

I am focused on Chapter 4: Topology of [FONT=MathJax_AMS]R and Continuity ... ...

I need help in order to fully understand the proof of Proposition 4.1.9 ...Proposition 4.1.9 and its proof read as follows:
View attachment 9091
My questions are as follows:Question 1

In the above proof by Sohrab we read the following:

" ... ... Now, if $$c \lt b$$, then we can pick $$d \in ( c, c + \epsilon )$$ such that $$c \lt d \lt b$$ ... ... "My question is as follows:

How (... rigorously speaking ... ) do we know such a $$d$$ exists ...

In other words, what is the rigorous justification that if $$c \lt b$$, the we can pick $$d \in ( c, c + \epsilon )$$ such that $$c \lt d \lt b$$ ... ...?

Question 2

In the above proof by Sohrab we read the following:

" ... ... Now, if $$c \lt b$$, then we can pick $$d \in ( c, c + \epsilon )$$ such that $$c \lt d \lt b$$, and it follows that $$[a,d ]$$ can also be covered by a finite subcover. i.e. $$d \in S$$ ... ... "Can someone please explain why/how it follows that $$[a,d ]$$ can also be covered by a finite subcover. i.e. $$d \in S$$ ... ... ?

Help will be appreciated ...

Peter
 

Attachments

  • Sohrab - Proposition 4.1.9 ... .png
    Sohrab - Proposition 4.1.9 ... .png
    14.6 KB · Views: 116
Last edited:
Physics news on Phys.org
Hi Peter,

For question 1, since $c<b$ and $\epsilon>0$, you can take $d$ between $c$ and $\min(c+\epsilon,b)$.

For question 2, since $c<d<c+\epsilon$, and $(c-\epsilon,c+\epsilon)\subset O_\lambda$, $d\in O_\lambda$, and you can add $O_\lambda$ to the finite cover of $[a,c)$ to get a finite cover of $[a,d]$.
 
Hi Peter,

My answer of question 2 is not quite correct. In fact, we do not necessarily have a finite cover of the interval $[a,c)$ (which is not compact).

We do not know if $c\in S$. What we do know is that, for any $x$ with $a<x<c$, we have a finite cover $U_x$ of $[a,x]$. We can take $x$ between $c-\epsilon$ and $c$, which gives the inequalities:
$$
a<c-\epsilon<x<c<d<c+\epsilon
$$
Now, $U_x$ covers $[a,x]$ and $O_\lambda$ covers $(c-\epsilon,c+\epsilon)$ (which contains $d$); therefore $U_x\cup O_\lambda$ covers $[a,d]$; this means that $d\in S$, which contradicts $c=\sup S$.
 
castor28 said:
Hi Peter,

My answer of question 2 is not quite correct. In fact, we do not necessarily have a finite cover of the interval $[a,c)$ (which is not compact).

We do not know if $c\in S$. What we do know is that, for any $x$ with $a<x<c$, we have a finite cover $U_x$ of $[a,x]$. We can take $x$ between $c-\epsilon$ and $c$, which gives the inequalities:
$$
a<c-\epsilon<x<c<d<c+\epsilon
$$
Now, $U_x$ covers $[a,x]$ and $O_\lambda$ covers $(c-\epsilon,c+\epsilon)$ (which contains $d$); therefore $U_x\cup O_\lambda$ covers $[a,d]$; this means that $d\in S$, which contradicts $c=\sup S$.

Thanks for the guidance and assistance ... and the correction ...

Most helpful ...

Peter
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top