Undergrad Co- and Contravariance

Click For Summary
SUMMARY

The discussion centers on the concepts of covariance and contravariance in the context of special relativity, specifically regarding four-vectors and their transformation using the Minkowski metric. Participants clarify that a four-vector with an upper index, such as \(A^\mu\), can be transformed into a co-vector with a lower index, \(A_\mu\), by applying the Minkowski metric, which alters the sign of certain components. The physical distinction between \(x^0\) and \(x_0\) is explained through the mathematical framework of duality, where vectors and co-vectors represent different aspects of the same physical entity. Recommendations for further reading include resources on the metric tensor and graphical representations of vectors and co-vectors.

PREREQUISITES
  • Understanding of four-vectors in special relativity
  • Familiarity with the Minkowski metric
  • Basic knowledge of linear algebra, particularly vectors and matrices
  • Concept of duality between vectors and co-vectors
NEXT STEPS
  • Study the properties of the Minkowski metric in detail
  • Explore the concept of duality in linear algebra
  • Learn about the metric tensor and its applications in general relativity
  • Investigate graphical representations of vectors and co-vectors
USEFUL FOR

Students and professionals in physics, particularly those studying special relativity, as well as mathematicians interested in the applications of linear algebra in physics.

deuteron
Messages
64
Reaction score
14
TL;DR
What physical meaning does covariance and contravariance have?
Hi,
I am very confused about the mathematics related to special relativity.
I have understood, that a four-vector with an upper index has the form:
$$A^\mu = (A^0 , A^1, A^2, A^3)$$
where lowering the index would make the indices other than the ##0##th negative:
$$A_\mu = (A_0, -A^1, -A^2, -A^3)$$
In order to lower the index, we would need to multiply the four-vector with the Minkowski metric.

I understand, that the four vector ##x^\mu = (ct, x^1,x^2,x^3)## gives the temporal and spatial positions of an event.
What I don't understand is what "multiplying by the Minkowski metric" physically does to the four vector, and what the physical difference between ##x_0## and ##x^0## is. What physical difference does it make when the four-vector has a lower index or an upper index?

I am in general very confused about this, so any recommendation of a source on the mathematics of special relativity is very welcome
 
Physics news on Phys.org
That is a very good question. In fact, many (many!) students are confused by this. In fact, it is such a good question I might just take the time to write up a PF Insight on the topic …

In the meantime, know that you are not alone and that it is very confusing. It will be somewhat clearer if you go to curvilinear coordinates or curved spacetimes (ie, GR) as there the distinction between the tangent space and its dual is clearer.
 
  • Like
Likes PeterDonis, fresh_42 and martinbn
Orodruin said:
That is a very good question. In fact, many (many!) students are confused by this. In fact, it is such a good question I might just take the time to write up a PF Insight on the topic …

In the meantime, know that you are not alone and that it is very confusing. It will be somewhat clearer if you go to curvilinear coordinates or curved spacetimes (ie, GR) as there the distinction between the tangent space and its dual is clearer.
In case you write that Insight, can you please also explain what makes the d'Alembert operator "relativistic" and different from the classical ##\frac 1 c \frac {\partial^2}{\partial t^2}-\Delta## that we have in the "classical" wave equation?..
 
deuteron said:
TL;DR Summary: What physical meaning does covariance and contravariance have?

Hi,
I am very confused about the mathematics related to special relativity.
I have understood, that a four-vector with an upper index has the form:
$$A^\mu = (A^0 , A^1, A^2, A^3)$$
where lowering the index would make the indices other than the ##0##th negative:
$$A_\mu = (A_0, -A^1, -A^2, -A^3)$$
In order to lower the index, we would need to multiply the four-vector with the Minkowski metric.

I understand, that the four vector ##x^\mu = (ct, x^1,x^2,x^3)## gives the temporal and spatial positions of an event.
What I don't understand is what "multiplying by the Minkowski metric" physically does to the four vector, and what the physical difference between ##x_0## and ##x^0## is. What physical difference does it make when the four-vector has a lower index or an upper index?

I am in general very confused about this, so any recommendation of a source on the mathematics of special relativity is very welcome

It's rather like the difference between a row vector and a column vector in matrix notation, if that helps any. Graphically, vectors, represented with a superscript like ##A^i##, are usually represented as little arrows. co-vectors, represented with a subscript, like ##A_i##, are usually represented by a "stack of parallel plates". A co-vector maps a vector to a scalar, in the graphical representation this is the number of parallel plates the line with the arrow pierces.

As long as you have a metric tensor, you can convert vectors to co-vectors, the metric tensor maps vectors to co-vectors as you mentioned, and the inverse of the metric tensor, ##g^{uv}##, maps co-vectors to vectors. In matrix notation, there is no metric tensor, the operation of taking the transpose makes a vector a co-vector and vica-vera.

I would say it's largely mathematical question rather than a physical one, though there are some standardized conventions as to which one is used in which circumstance.

If the stack-of-plates notion isn't familiar, https://math.stackexchange.com/questions/1078427/how-to-visualize-1-forms-and-p-forms has some illustrations.

Mathematically a co-vector, or "one-form", is a linear map from a vector to a scalar. The relation between vectors and co-vectors is known as duality - each is the "dual" of the other.
 
Ben Crowell (former mentor here) noted that the concept is similar to frequency and period. Both encode the same information but in different ways, and if you change coordinates (e.g. change from measuring time in seconds to minutes) they change in opposite directions. And the product of the two is invariant under coordinate change.
 
  • Like
Likes weirdoguy, Nugatory, Sagittarius A-Star and 2 others
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
790
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 23 ·
Replies
23
Views
6K
Replies
8
Views
647
  • · Replies 24 ·
Replies
24
Views
2K
Replies
28
Views
4K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K