Coefficients for an exponential Fourier Series

Click For Summary
SUMMARY

The forum discussion focuses on deriving the Fourier series for the function \( f(\theta) = e^{-\alpha |\theta|} \) over the interval \(-\pi < \theta < \pi\). The user successfully rewrites the Fourier series using Euler's formula and computes the coefficients \( k_n \) through inner products. The final expression for the coefficients is simplified to \( k_n = -\frac{2 \alpha (e^{\pi \alpha} - 1)}{\pi (\alpha^2 + n^2)} \), confirming the correctness of the method used. The discussion highlights the importance of recognizing simplifications in trigonometric functions for integer values of \( n \).

PREREQUISITES
  • Understanding of Fourier series and their applications
  • Familiarity with Euler's formula and trigonometric identities
  • Knowledge of inner product concepts in function spaces
  • Basic calculus, particularly integration techniques
NEXT STEPS
  • Study the derivation of Fourier series for piecewise continuous functions
  • Learn about convergence properties of Fourier series
  • Explore applications of Fourier series in signal processing
  • Investigate the use of software tools like Maple for symbolic computation in Fourier analysis
USEFUL FOR

Mathematicians, physics students, and engineers interested in Fourier analysis, particularly those working with exponential functions and series expansions.

ElPimiento
Messages
16
Reaction score
0
I'm kinda just hoping someone can look over my work and tell me if I'm solving the problem correctly. Since my final answer is very messy, I don't trust it.

1. Homework Statement

We're asked to find the Fourier series for the following function:
$$
f(\theta)=e^{−\alpha \lvert \theta \rvert}}, \ \ \ \text{for} −\pi<\theta<\pi,
$$
where ##f(\theta + \pi) = f(\theta)##. Except our Fourier series has the form:
$$
f(\theta) = \sum_{-\infty}^{\infty} c_n e^{in\theta}
$$

Homework Equations


Variation on Euler:
$$
\cos{\theta} = \frac{1}{2}(e^{i\theta} + e^{-i\theta})
$$
Vector projection:
$$
proj_\vec{v}(\vec{u}) = \frac{\langle\vec{v}, \vec{u}\rangle}{\langle\vec{v}, \vec{v}\rangle}
$$

The Attempt at a Solution


So, supposing ##n## is an Integer, I First realized that every positive ##n## has a negative partner, hence our special Fourier series formula can be rewritten as
$$
\begin{align*}
\sum_{-\infty}^{\infty} c_n e^{in\theta}
& = c_0 + \sum_{-\infty}^{-1} (c_{n^{(-)}} e^{in\theta}) + \sum_{1}^{\infty} (c_{n^{(+)}} e^{in\theta}) \\
& = c_0 + \sum_{-\infty}^{\infty }k_n (e^{in\theta} + e^{-in\theta}) \\
& = \sum_{-\infty}^{\infty} k_n \cos(n\theta) \\
\end{align*}
$$
Where I have used the variation on Euler's Equation (above) and set ##k_n = (c_{n^{(-)}} + c_{n^{(+)}})/2##.
Then using the inner product:
$$
\langle f(x), g(x) \rangle = \int_{-\pi}^{\pi} dx f(x) g(x)
$$
I found that the coefficients should be:
##
\begin{align*}
k_n & = \frac{\langle e^{-\alpha \lvert \theta \rvert}, \cos(n \theta) \rangle}{\langle \cos(n \theta), cos(n \theta)\rangle} \\
& = \frac{\int_{-\pi}^{\pi} e^{-\alpha \lvert \theta \rvert} cos(n \theta)} {\int_{-\pi}^{\pi} cos^2(n \theta)} \\
& = \frac{\int_{0}^{\pi} e^{-\alpha \theta} cos(n \theta)} {\int_{0}^{\pi} cos^2(n \theta)} \ \ \ \ \ (\because \text{all the functions are even}) \\
& = - \frac{4 n (\frac{\alpha \cos(\pi n) - n \sin(\pi n)}{(\alpha^2 + n^2)e^{(\pi \alpha)}} - \frac{\alpha}{\alpha^2 + n^2} )} {2 \pi n + \sin(2 \pi n)} \\
\end{align*}
##
Which is a mess.

I used cosines hoping it would simplify the problem (since they're even and the resulting series starts at 0 instead of ##-\infty##), but it doesn't look like it did much good. So is the method at least right?
 
Last edited:
Physics news on Phys.org
ElPimiento said:
I'm kinda just hoping someone can look over my work and tell me if I'm solving the problem correctly. Since my final answer is very messy, I don't trust it.

1. Homework Statement

We're asked to find the Fourier series for the following function:
$$
f(\theta)=e^{−\alpha \lvert \theta \rvert}}, \ \ \ \text{for} −\pi<\theta<\pi,
$$
where ##f(\theta + \pi) = f(\theta)##. Except our Fourier series has the form:
$$
f(\theta) = \sum_{-\infty}^{\infty} c_n e^{in\theta}
$$

Homework Equations


Variation on Euler:
$$
\cos{\theta} = \frac{1}{2}(e^{i\theta} + e^{-i\theta})
$$
Vector projection:
$$
proj_\vec{v}(\vec{u}) = \frac{\langle\vec{v}, \vec{u}\rangle}{\langle\vec{v}, \vec{v}\rangle}
$$

The Attempt at a Solution


So, supposing ##n## is an Integer, I First realized that every positive ##n## has a negative partner, hence our special Fourier series formula can be rewritten as
$$
\begin{align*}
\sum_{-\infty}^{\infty} c_n e^{in\theta}
& = c_0 + \sum_{-\infty}^{-1} (c_{n^{(-)}} e^{in\theta}) + \sum_{1}^{\infty} (c_{n^{(+)}} e^{in\theta}) \\
& = c_0 + \sum_{-\infty}^{\infty }k_n (e^{in\theta} + e^{-in\theta}) \\
& = \sum_{-\infty}^{\infty} k_n \cos(n\theta) \\
\end{align*}
$$
Where I have used the variation on Euler's Equation (above) and set ##k_n = (c_{n^{(-)}} + c_{n^{(+)}})/2##.
Then using the inner product:
$$
\langle f(x), g(x) \rangle = \int_{-\pi}^{\pi} dx f(x) g(x)
$$
I found that the coefficients should be:
##
\begin{align*}
k_n & = \frac{\langle e^{-\alpha \lvert \theta \rvert}, \cos(n \theta) \rangle}{\langle \cos(n \theta), cos(n \theta)\rangle} \\
& = \frac{\int_{-\pi}^{\pi} e^{-\alpha \lvert \theta \rvert} cos(n \theta)} {\int_{-\pi}^{\pi} cos^2(n \theta)} \\
& = \frac{\int_{0}^{\pi} e^{-\alpha \theta} cos(n \theta)} {\int_{0}^{\pi} cos^2(n \theta)} \ \ \ \ \ (\because \text{all the functions are even}) \\
& = - \frac{4 n (\frac{\alpha \cos(\pi n) - n \sin(\pi n)}{(\alpha^2 + n^2)e^{(\pi \alpha)}} - \frac{\alpha}{\alpha^2 + n^2} )} {2 \pi n + \sin(2 \pi n)} \\
\end{align*}
##
Which is a mess.

I used cosines hoping it would simplify the problem (since they're even and the resulting series starts at 0 instead of ##-\infty##), but it doesn't look like it did much good. So is the method at least right?
Why don't you simplify ##\cos(\pi n), \sin(\pi n)## and ##\sin (2 \pi n)##? Remember that ##n## is an integer.

When you do that you get a result that agrees with that obtained using Maple.
 
  • Like
Likes   Reactions: ElPimiento
Oh duh, I should've realized that >~<.
Thanks though! That cleaned it up nicely:
$$
k_n = -\frac{2 \alpha (e^{\pi \alpha} - 1)}{\pi (\alpha^2 + n^2)}
$$
 
ElPimiento said:
Oh duh, I should've realized that >~<.
Thanks though! That cleaned it up nicely:
$$
k_n = -\frac{2 \alpha (e^{\pi \alpha} - 1)}{\pi (\alpha^2 + n^2)}
$$
Woops! got a little too excited with the cancelation:
$$
\begin{align*}
k_n
& = -\frac{2 \, {\left(\frac{\left(-1\right)^{n} \alpha}{\alpha^{2} e^{\left(\pi \alpha\right)} + n^{2} e^{\left(\pi \alpha\right)}} - \frac{\alpha}{\alpha^{2} + n^{2}}\right)}}{\pi} \\
& = - \frac{2 \alpha ((-1)^n e^{- \pi \alpha} - 1)}{\pi (\alpha^2 + n^2)} \\
\end{align*}
$$
 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
1
Views
2K