- #1

- 9

- 0

EDIT: I figured it out by looking at this link pages 65-66. Thanks for looking though! http://www.bfasta.net/assets/files/...46 Information/HSU/Chapter 4 Acceleration.pdf

Recently I just did a physics lab for kinematics in which we found the position, speed, and acceleration as time passed of a moving object. I finished most of the lab questions, however am curious about 2 aspects of the equation.

Position vs time graph equation: [tex]y = 0.5424x^2 + 0.2072x + 0.0149[/tex]

One of the questions asks the relation of the coefficient of the x^2 term to the graph of the speed vs time and the graph of the acceleration vs time. I figured out that it's 1/2 the slope of the speed vs time/equivalent to the acceleration, so I finished the question. However, I have no clue why this is true (this isn't part of the lab question, I'm just curious).

Another question asks how the coefficient of the x-term relates to the graph of the speed vs time and acceleration vs time. I already figured out that it is equivalent to the y-intercept of the speed vs time graph, but am not sure if it relates to the acceleration vs time graph. The only relation I can see is that it is about 1/5 of the y-intercept of the acceleration equation. Is this correct? (And why, if it is).

EDIT: I figured it out by looking at this link pages 65-66. Thanks for looking though! http://www.bfasta.net/assets/files/...46 Information/HSU/Chapter 4 Acceleration.pdf

## Homework Statement

Recently I just did a physics lab for kinematics in which we found the position, speed, and acceleration as time passed of a moving object. I finished most of the lab questions, however am curious about 2 aspects of the equation.

## Homework Equations

Position vs time graph equation: [tex]y = 0.5424x^2 + 0.2072x + 0.0149[/tex]

## The Attempt at a Solution

One of the questions asks the relation of the coefficient of the x^2 term to the graph of the speed vs time and the graph of the acceleration vs time. I figured out that it's 1/2 the slope of the speed vs time/equivalent to the acceleration, so I finished the question. However, I have no clue why this is true (this isn't part of the lab question, I'm just curious).

Another question asks how the coefficient of the x-term relates to the graph of the speed vs time and acceleration vs time. I already figured out that it is equivalent to the y-intercept of the speed vs time graph, but am not sure if it relates to the acceleration vs time graph. The only relation I can see is that it is about 1/5 of the y-intercept of the acceleration equation. Is this correct? (And why, if it is).

EDIT: I figured it out by looking at this link pages 65-66. Thanks for looking though! http://www.bfasta.net/assets/files/...46 Information/HSU/Chapter 4 Acceleration.pdf

Last edited: