Coming up with recursive and closed form expressions

Click For Summary
The discussion revolves around finding recursive and closed form expressions for various sequences. The first sequence, Cn, is defined recursively as C(n) = C(n-1)/3, starting with C0 = 1/4, while the second sequence, Dn, uses the recursion D(n) = n*D(n-1) with D0 = 1. A closed form for the third sequence is sought in the format ?/2n+1. The fourth sequence involves the Fibonacci numbers, with a new sequence Qn defined as Qn = F(n+1)/Fn, where the first few terms are listed. The conversation emphasizes understanding the process of deriving these expressions rather than just obtaining the answers.
KevinL
Messages
37
Reaction score
0

Homework Statement



I am having some trouble coming up with recursive and closed form expressions of different sequences. I realize helping me with this would pretty much just be giving me the answer, but if anyone could also help me with how to think of the answers that would be nice.

1) Cn = (1/4, 1/12, 1/36, 1/108)

CF: ?
R: C(n-1)/3

2) Dn = (1, 2, 6, 24, 120)

CF: ?
R: n*D(n-1)

3) I only need the closed form for this. (1/3, 4/5, 7/7, 10/9, 13/11)

CF: ?/2n+1

4) Let (1, 1, 2, 3, 5, 8) be the Fibonacci sequence. Define a new sequence by Qn = F(n+1)/Fn

a. List the first several terms of Qn
(1, 2, 3/2, 5/3, 8/5)

b. Find a recusive formula for Qn

?
 
Physics news on Phys.org


Let's start with the first one. You correctly noticed that the sequence is given by a recursion relation
C_0 = 1/4, C_n = C_{n - 1} / 3
(note how I wrote down explicitly what C_{n-1}/3 gives you by using an equality sign, and that I have included the first term which you need to calculate anything using the recursion relation).

Now make a few steps in your mind. If you want to calculate the second term in the series, you have to take the first one, 1/4, and divide it by 3. To go to the third, take the second, (1/4)/3 = 1/12, and divide it by 3. Now how can I go directly from the first term, 1/4, to the third one, 1/36?
Suppose that I want to go from the first one to the fifth...
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
897
Replies
14
Views
2K