ryanwilk
- 55
- 0
Homework Statement
Use the residue theorem to compute \int_0^{2\pi} sin^{2n}\theta\ d\theta
Homework Equations
\mathrm{Res}(f,c) = \frac{1}{(n-1)!} \lim_{z \to c} \frac{d^{n-1}}{dz^{n-1}}\left( (z-c)^{n}f(z) \right)
The Attempt at a Solution
I started with the substitution z = e^{i\theta}
so that sin\theta= \frac{1}{2i} (z - \frac{1}{z})
and d\theta = \frac{dz}{iz}.
Therefore, the integral becomes: \oint_C \frac{1}{iz} \frac{1}{{(2i)}^{2n}} (z - \frac{1}{z})^{2n}\ dz = \frac{1}{i(2i)^{2n}} \oint_C \frac{(z - \frac{1}{z})^{2n}}{z}\ dz
so there's a pole at z=0 of order 2n+1.
The residue is \frac{1}{i(2i)^{2n}(2n)!} \lim_{z \to 0} \frac{d^{2n}}{dz^{2n}} z^{2n} (z - \frac{1}{z})^{2n} = \frac{1}{i(2i)^{2n}(2n)!} \lim_{z \to 0} \frac{d^{2n}}{dz^{2n}} (z^2-1)^{2n}.
But I have no idea how to evaluate this...
Last edited:
…