Complex integration is giving the wrong answer by a factor of two

Click For Summary
SUMMARY

The forum discussion centers on the evaluation of the integral $$\int_{0}^{2\pi } (1+2\cos t)^{n}\cos(nt) dt$$ and the discrepancies between the calculated result and the expected answer of $$2\pi$$. Participants identify errors in the application of the residue theorem, particularly in the treatment of the integrand and the omission of critical factors such as $$\frac{1}{2i}$$. The discussion emphasizes the importance of correctly identifying terms contributing to the residue and the potential pitfalls of derivative calculations in complex analysis.

PREREQUISITES
  • Understanding of complex analysis, specifically the residue theorem.
  • Familiarity with contour integration techniques.
  • Knowledge of Taylor series expansions and their applications in integrals.
  • Proficiency in manipulating complex exponentials and trigonometric identities.
NEXT STEPS
  • Study the application of the residue theorem in complex integration.
  • Learn about Taylor series expansions and their role in evaluating integrals.
  • Explore the relationship between contour integrals and real integrals in complex analysis.
  • Investigate common pitfalls in derivative calculations when applying the residue theorem.
USEFUL FOR

Mathematicians, physics students, and anyone involved in complex analysis or integral calculus, particularly those working with contour integrals and residue calculations.

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
$$\int_{0}^{2\pi } (1+2cost)^{n}cos(nt) dt$$

$$e^{it} = z, izdt = dz$$

$$\oint (1+e^{it}+e^{-it})^{n}\frac{e^{nit}+e^{-nit}}{2} \frac{dz}{iz} = \oint (1+z+z^{-1})^{n}\frac{z^{n}+z^{-n}}{2} \frac{dz}{iz}$$

$$\oint (z+z^{2}+1)^{n}\frac{z^{2n}+1}{z^{2n+1}} \frac{dz}{2i} = \pi Res = \pi \frac{d^{2n}}{(2n)! dz^{2n}}((z+z^{2}+1)^{n}(z^{2n}+1))$$

$$= \pi \sum \begin{pmatrix}
2n\\ \beta
\end{pmatrix} \frac{d^{\beta} {(z^{2n}+1)}}{dz^{\beta}(2n)!} \frac{d^{2n-\beta}}{dz^{2n-\beta}}(z+z^{2}+1)^{n}$$

Since the pole is at z=0, all terms above vanish apart from ##\beta = 2n##, in this case:

$$= \pi \frac{d^{2n} {(z^{2n}+1)}}{(2n)!dz^{2n}} \frac{d^{0}}{dz^{0}}(z+z^{2}+1)^{n} $$
$$= \pi \frac{(2n)!}{(2n)!} (1) = \pi $$

The answer provided by the book is ##2 \pi##

I can't really find the error i supposedly did :/
 
Physics news on Phys.org
Take a look at the integral and integrand to figure out the residue term without the cumbersome derivatives: You are just interested in ## z^{2n} ##, (in the numerator), and you have ## z^{2n}+1 ##, multiplied by ##(z^2+z+1)^n ##. For the ## (z^2+z+1)^n ##, you need the ## z^{2n} ## and the ## 1 ##, (the end terms on either side in the expansion). None of the other terms in the expansion will give a ## z^{2n} ## term when multiplied by ## z^{2n}+1 ##. When multiplied through and summed, it is clear that you get ## 2 z^{2n} ## as the term in the numerator that will give you the residue term, i.e. ## \frac{b}{z} ##, where ## b=2 ##.
 
Last edited:
  • Like
Likes LCSphysicist
Charles Link said:
Take a look at the integral and integrand to figure out the residue term without the cumbersome derivatives: You are just interested in ## z^{2n} ##, (in the numerator), and you have ## z^{2n}+1 ##, multiplied by ##(z^2+z+1)^n ##. For the ## (z^2+z+1)^n ##, you need the ## z^{2n} ## and the ## 1 ##, (the end terms on either side in the expansion). None of the other terms in the expansion will give a ## z^{2n} ## term when multiplied by ## z^{2n}+1 ##. When multiplied through and summed, it is clear that you get ## 2 z^{2n} ## as the term in the numerator that will give you the residue term, i.e. ## \frac{b}{z} ##, where ## b=2 ##.
I can see your approach. But i really would like to know what error did i comitted :c i still did't find it
 
You have omitted
\frac{1}{(2n)!}\binom{2n}{0} \frac{d^{0}}{dz^0}(z^{2n}+1)\frac{d^{2n}}{dz^{2n}} ((z^2 + z + 1)^n) = \frac{1}{(2n)!}(z^{2n} + 1)(2n)!.
 
  • Like
Likes LCSphysicist and Charles Link
Herculi said:
I can see your approach. But i really would like to know what error did i comitted :c i still did't find it
I think you also get a term from ## \beta=0 ## in the derivative summation. (The product rule with multiple derivatives is clumsy, but I think that's the term you missed).

Edit: and I see @pasmith agrees with me=he posted just as I was posting.
 
Herculi said:
Homework Statement:: .
Relevant Equations:: .

$$\int_{0}^{2\pi } (1+2cost)^{n}cos(nt) dt$$

$$e^{it} = z, izdt = dz$$

$$\oint (1+e^{it}+e^{-it})^{n}\frac{e^{nit}+e^{-nit}}{2} \frac{dz}{iz} = \oint (1+z+z^{-1})^{n}\frac{z^{n}+z^{-n}}{2} \frac{dz}{iz}$$

$$\oint (z+z^{2}+1)^{n}\frac{z^{2n}+1}{z^{2n+1}} \frac{dz}{2i} = \pi Res = \pi \frac{d^{2n}}{(2n)! dz^{2n}}((z+z^{2}+1)^{n}(z^{2n}+1))$$

$$= \pi \sum \begin{pmatrix}
2n\\ \beta
\end{pmatrix} \frac{d^{\beta} {(z^{2n}+1)}}{dz^{\beta}(2n)!} \frac{d^{2n-\beta}}{dz^{2n-\beta}}(z+z^{2}+1)^{n}$$

Since the pole is at z=0, all terms above vanish apart from ##\beta = 2n##, in this case:

$$= \pi \frac{d^{2n} {(z^{2n}+1)}}{(2n)!dz^{2n}} \frac{d^{0}}{dz^{0}}(z+z^{2}+1)^{n} $$
$$= \pi \frac{(2n)!}{(2n)!} (1) = \pi $$

The answer provided by the book is ##2 \pi##

I can't really find the error i supposedly did :/
Why is it not ##2\pi i Res## in
$$\oint (z+z^{2}+1)^{n}\frac{z^{2n}+1}{z^{2n+1}} \frac{dz}{2i} = \pi Res = \pi \frac{d^{2n}}{(2n)! dz^{2n}}((z+z^{2}+1)^{n}(z^{2n}+1))$$

The residue at z=0 is $$\frac 1 i$$
 
The OP simplified using the factor of ##2i## in the denominator of the integrand. It made me look twice too.
 
I still don't see it..
$$ \oint (1+z+z^{-1})^{n}\frac{z^{n}+z^{-n}}{2} \frac{dz}{iz}=2\pi i~Res \left[(1+z+z^{-1})^{n}\frac{z^{n}+z^{-n}}{2} (-i)\right]_{z=0} $$ $$=2\pi$$
 
  • Like
Likes Charles Link
The OP is finding the residue of the integrand without the factor of ##2i##.
 
  • Like
Likes Infrared, hutchphd and Charles Link
  • #10
Apologies I don't know what you mean. The value of the integral is ##2\pi## and this is how you find it. He gets the wrong value...
 
  • #11
hutchphd said:
Apologies I don't know what you mean. The value of the integral is ##2\pi## and this is how you find it. He gets the wrong value...
The OP was somewhat sloppy in changing the function of interest by dropping a factor of ## 1/2 i ##, ( using it to cancel the ## 2i ## of ##2 \pi i ##). In any case, he uses a derivative formula to isolate the term of interest in the series, (the coefficient ## b ## of the ## \frac{b}{z } ## term), and when he did, he miscalculated the derivative.
 
  • Like
Likes hutchphd
  • #12
Wow that is a strange manipulation. Got it. Thanks.
I know it was mentioned by @Charles Link but the OP needs to understand his error was occasioned by doing the problem in a most ill-advised manner. That needs to be the take-away IMHO. The Residue Theorem is troo voodoo.
 
  • Like
Likes Charles Link
  • #13
In response to the previous post by @hutchphd , I do see a way to work this problem without using the residue theorem, where you can use ## \int\limits_{0}^{2 \pi} e^{imt} \, dt=0 ## for all integers ## m ##, except ## m=0 ##.
 
  • #14
Don't get me wrong I love Cauchy, but I always feel that I am summoning the occult. Sticking pins in the complex plane as it were. It works so well. I suppose when I really feel at home with Euler's Equation the feeling will abate. But anyway no derivatives are necessary to get to the residue term in this case.
 
  • Like
Likes Charles Link

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K