1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Complex Variable-definite integral

  1. Oct 14, 2008 #1
    Complex Variable---definite integral

    Show that
    f(k) = [tex]\frac{1}{2i\pi}[/tex] [tex]\int^{\infty}_{-\infty}[/tex] [tex]\frac{e^{ikx}}{x-i\epsilon}dx[/tex] =

    1, if k>0
    0, if k<0

    where [tex]\epsilon[/tex] > 0

    The attempt at a solution

    1st. step:
    Consider : [tex]\oint^{\infty}_{-\infty}[/tex] [tex]\frac{e^{ikz}}{z-i\epsilon}dz[/tex]

    the residule is : e^(-k[tex]\epsilon[/tex])

    so [tex]\int^{\infty}_{-\infty}[/tex] [tex]\frac{e^{ikx}}{x-i\epsilon}dx[/tex]

    = [tex]{2i\pi}[/tex] e^(-k[tex]\epsilon[/tex])

    [tex]\frac{1}{2i\pi}[/tex] [tex]\int^{\infty}_{-\infty}[/tex] [tex]\frac{e^{ikx}}{x-i\epsilon}dx[/tex]

    = e^(-k[tex]\epsilon[/tex])
  2. jcsd
  3. Oct 14, 2008 #2


    User Avatar
    Science Advisor

    Re: Complex Variable---definite integral

    This makes no sense. What contour are you integrating over?

  4. Oct 14, 2008 #3
    Re: Complex Variable---definite integral

    um...the pole is at z= iε
    so i find the residule at z=iε
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook