Complicated equation and Simple equation for the Same Curve?

  • Context: High School 
  • Thread starter Thread starter pairofstrings
  • Start date Start date
  • Tags Tags
    Curve
Click For Summary

Discussion Overview

The discussion revolves around the representation of a curve using both complicated and simple mathematical equations. Participants explore the nature of these representations, the conditions under which they can be considered intricate or straightforward, and the implications of complexity in mathematical expressions.

Discussion Character

  • Exploratory
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants suggest that a curve can be represented in both complicated and simple mathematical forms, depending on the desired accuracy of the representation.
  • One participant proposes that a gross approximation of a curve could be represented by the function 1/x, while others discuss the potential for more complex equations to fit the same curve.
  • There are mentions of interpolation methods that can create sophisticated approximations of curves by passing through specific points.
  • Participants debate the subjectivity of what constitutes a "complicated" versus a "simple" equation, with examples provided to illustrate differing perspectives.
  • Some argue that while an equation can be made more complicated, simplifying it may not always preserve the integrity of the information it conveys.
  • Discussions include the idea that a curve's equation might evolve from a complex form to a simpler one over time, reflecting a process of refinement.
  • There is a challenge to clarify definitions and the context in which complexity is assessed, particularly in relation to mathematical expressions.

Areas of Agreement / Disagreement

Participants express differing views on the definitions of complicated and simple equations, with no consensus reached on these terms. The discussion remains unresolved regarding the criteria for complexity in mathematical representations.

Contextual Notes

Participants highlight the importance of context and definitions when discussing complexity, noting that different interpretations can lead to varying conclusions about the nature of mathematical expressions.

  • #31
hutchphd said:
I can always make an equation more complicated. For instance y=x can be rewritten as y=(x+1)(sin^2x+cos^2x) -1.

Does y = x and y=(x+1)(sin^2x+cos^2x) -1 have the same meaning or is it the same graph but only the expressions are changing?
 
Last edited:
Mathematics news on Phys.org
  • #32
pairofstrings said:
Does y = x and y=(x+1)(sin^2x+cos^2x) -1 have the same meaning
Yes. The two equations are equivalent -- for a given value of x, both equations produce the same y value.
pairofstrings said:
or is it the same graph but only the expressions are changing?
Yes to that, also. The graphs would be exactly the same. The only difference is that the expression on the right in the 2nd equation is unsimplified.
 
  • Like
Likes   Reactions: pairofstrings
  • #33
Mark44 said:
The graphs would be exactly the same. The only difference is that the expression on the right in the 2nd equation is unsimplified.

I didn't think that I have online graphing calculators for producing graphs for these equations. Sorry about that.

Okay, so the unsimplified 2nd equation is destined to become 'x' on simplification? Like this: y = x? Is it possible to get anything else other than 'x' on simplification from this unsimplified 2nd equation?
 
Last edited:
  • #34
Yes. Making something "simpler" is more difficult: you reach the point where you cannot continue but you can never be certain. You can complexify ad infinitum
 
  • #35
Mark44 said:
The two equations are equivalent -- for a given value of x, both equations produce the same y value.

pairofstrings said:
the unsimplified 2nd equation is destined to become 'x' on simplification? Like this: y = x? Is it possible to get anything else other than 'x' on simplification from this unsimplified 2nd equation?

Does y = x and y=(x+1)(sin^2x+cos^2x) -1 have the same context?
y = x may have context not similar to y = ( x + 1)( sin^2x + cos^2x ) - 1...

First one is linear equation (straight lines) and the second equation is trigonometric equation (side lengths and angles).

What could y = x be?
What could y=(x+1)(sin^2x+cos^2x) -1 be?

What does it mean if y is x and y is (x+1)(sin^2x+cos^2x) -1?

Thanks!
 
Last edited:
  • #36
pairofstrings said:
Does y = x and y=(x+1)(sin^2x+cos^2x) -1 have the same context?
y = x may have context not similar to y = ( x + 1)( sin^2x + cos^2x ) - 1...
I don't know what "same context" means in regard to equations. The two equations are equivalent, meaning that they both represent exactly the same points, and their graphs are exactly the same.
pairofstrings said:
First one is linear equation (straight lines) and the second equation is trigonometric equation (side lengths and angles).
No, they are both linear equations, meaning that the graph of each equation is a straight line. Both graphs pass through the origin, and both graphs have a slope of 1.
pairofstrings said:
What could y = x be?
What could y=(x+1)(sin^2x+cos^2x) -1 be?
Already answered -- both are straight lines through the origin with a slope of 1.
 
  • #37
Mark44 said:
I don't know what "same context" means in regard to equations. The two equations are equivalent, meaning that they both represent exactly the same points, and their graphs are exactly the same.

Context here is that there is sine, cosine in y = (x + 1)(sin2x + cos2x) -1 but there is nothing like that in y = x...
 
Last edited:
  • #38
pairofstrings said:
Context here is that there is sine, cosine in y = (x + 1)(sin2x + cos2x) -1 but there is nothing like that in y = x...
Right, but "context" is pretty meaningless when you're talking about equations. A specific graph can have any number of equations that represent it, in part due to whether the expressions making up the equation have been fully simplified or not.
pairofstrings said:
So, what reason will make me use sin2x + cos2x in the equation?
Normally you wouldn't. The person who gave this as an example was just making a point that the equation y = x can be written many ways.

In yet another way, the equation ##y = \frac 1 2 \ln(e^{2x})## is equivalent to y = x, if x > 0. IOW, the graph of this equation aligns perfectly with the graph of y = x in the first quadrant, and excluding the origin.
 
  • #39
I might have missed the suggestion, but things could get ugly with an infinite series expansion in terms of your favorite orthogonal functions.
 
Last edited:
  • #40
Mark44 said:
The person who gave this as an example was just making a point that the equation y = x can be written many ways.

y = (x + 1)(sin2x + cos2x) -1 is an equation which appears as y = x when simplified.

Identity:
sin2x + cos2x = 1

What was the scenario for which Trigonometric functions like sine, cosine in equation y = (x + 1)(sin2x + cos2x) -1 were used?

I ask this question because y = x and y = (x + 1)(sin2x + cos2x) -1 both have similar graph, but the terms in the expressions are different. The terms are not same but the graph is, that is why please let me know the difference between y = x and y = (x + 1)(sin2x + cos2x) -1.
 
  • #41
pairofstrings said:
y = (x + 1)(sin2x + cos2x) -1 is an equation which appears as y = x when simplified.

Identity:
sin2x + cos2x = 1

What was the scenario for which Trigonometric functions like sine, cosine in equation y = (x + 1)(sin2x + cos2x) -1 were used?

I ask this question because y = x and y = (x + 1)(sin2x + cos2x) -1 both have similar graph, but the terms in the expressions are different. The terms are not same but the graph is, that is why please let me know the difference between y = x and y = (x + 1)(sin2x + cos2x) -1.
I do not understand your question.
sin2x + cos2x =1 so the equation simplifies to (x+1)-1=x
 
  • #42
pairofstrings said:
What was the scenario for which Trigonometric functions like sine, cosine in equation y = (x + 1)(sin2x + cos2x) -1 were used?
As I already said, someone earlier in the thread wanted to make the point that expressions can be written in many different ways, but have the same value.
pairofstrings said:
I ask this question because y = x and y = (x + 1)(sin2x + cos2x) -1 both have similar graph, but the terms in the expressions are different.
The graphs are not just similar -- they are exactly the same.
pairofstrings said:
The terms are not same but the graph is, that is why please let me know the difference between y = x and y = (x + 1)(sin2x + cos2x) -1.
Again, there is no real difference - the first one is just the simplified form of the latter one.
 
  • #43
Mark44 said:
As I already said, someone earlier in the thread wanted to make the point that expressions can be written in many different ways, but have the same value.

But what is this equation talking about?: y = (x + 1)(sin2x + cos2x) -1?

What is the phenomenon?

I agree that y = (x + 1)(sin2x + cos2x) -1 is y = x on simplification, and someone earlier in the thread wanted to make the point that expressions can be written in many different ways, but have the same value but what is sin2x, cos2x doing in the equation?
 
Last edited:
  • #44
pairofstrings said:
But what is this equation talking about?: y = (x + 1)(sin2x + cos2x) -1?

What is the phenomenon?

What is the equation y=x talking about? What is its phenomena?

The answers to your questions are the same as the answers to mine.

My answers are nothing and nothing. An equation is a mathematical abstraction that we map reality to.
 
Last edited:
  • #45
We seem to be going around in circles. You said this in post #20:
pairofstrings said:
As FactChecker points out the curve can be as simple as y = 1/x but what I am trying to know is if this curve can have a complicated equation; something more than just y = 1/x and I would get the same curve.
Yes it can have a more complicated equation. If I multiply the right side of the equation by any expression whose value is always 1 (such as ##\sin^2(x) + \cos^2(x)##) or add some expression whose value is always 0, I will get a new equation that is equivalent to the simpler one I started with -- exactly the same graph.

pairofstrings said:
But what is this equation talking about?: y = (x + 1)(sin2x + cos2x) -1?
Who cares what it is "talking about"? All that matters is that this equation is equivalent to the much simpler equation y = x. To get this equation, we can add 0 in the form of 1 + (-1) to x to get x + 1 - 1, then multiply the x + 1 part by 1 in the form of ##\sin^2(x) + \cos^2(x)##.
pairofstrings said:
What is the phenomenon?
It doesn't have to represent any phenomenon. Someone can write down an equation that has no physical significance whatsoever, but so what? You are being overly concerned about something that really isn't worth all of that angst.
pairofstrings said:
I agree that y = (x + 1)(sin2x + cos2x) -1 is y = x on simplification, and someone earlier in the thread wanted to make the point that expressions can be written in many different ways, but have the same value but what is sin2x, cos2x doing in the equation?
It is multiplying a part of the right hand side by 1, which is always legal to do.
 
  • #46
I have equation of heart curve: x6 + 3x4y - 3x4 + 3x2y4 - x2y3 - 6x2y2 + 3x2 + y6 - 3y4 + 3y2 = 1.

1. Heart curve with trigonometric functions:
x = 16 sin3
y = 13cost - 5cos(2t) - 2cos(3t) - cos(4t).

2. Psy curve with trigonometric functions.

Last thing I want to know is can I build any object with trigonometric functions as well?

Thanks.
 
  • #47
pairofstrings said:
I have equation of heart curve: x6 + 3x4y - 3x4 + 3x2y4 - x2y3 - 6x2y2 + 3x2 + y6 - 3y4 + 3y2 = 1.

Heart curve with trigonometric function:
x = 16 sin3
y = 13cost - 5cos(2t) - 2cos(3t) - cos(4t).

Last thing I want to know is can I build any object with trigonometric functions as well?

Thanks.
Yes to within reason. It is called a Fourier series.
 
  • #48
caz said:
Yes to within reason.

What is "Yes to within reason"? Does it mean that I can build only few types of objects with Fourier Series, not all objects?
 
  • #49
pairofstrings said:
What is "Yes to within reason"?
For example, a discontinuous function will have ringing near the discontinuity or a multi-valued function. I think that you could get around these by defining regions of applicability by defining regions of applicability for multiple series.
 
  • #50
pairofstrings said:
I have equation of heart curve: x6 + 3x4y - 3x4 + 3x2y4 - x2y3 - 6x2y2 + 3x2 + y6 - 3y4 + 3y2 = 1.

1. Heart curve with trigonometric functions:
x = 16 sin3
y = 13cost - 5cos(2t) - 2cos(3t) - cos(4t).
This is a different question from the one you posted in this thread, and is related to another thread you started a month or so ago. Your question of this thread apparently has been answered, so I'm closing this thread.

In your first equation above, you have an equation involving x and y. In the equations involving trig functions, x and y are given as parametric equations. A given curve can have different equations that generate the points on the curve, depending on whether the equations have been simplified or not (discussed in this thread) or depending on whether the curve is define in terms of parametric equations (heart equation with trig functions). A given curve can also have different sets of equations depending on the coordinates being used, such as if it's defined Cartesian coordinates or polar coordinates.

For example, a circle of radius 1/2 with center at (1/2, 0) can be defined by the Cartesian equation ##(x - 1/2)^2 + y^2 = 1## or by the polar equation ##r = \cos(\theta)##.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K