B Compton Scattering and Inverse Compton Scattering

dansmith170
Messages
45
Reaction score
11
TL;DR Summary
General Equation
Hi,

Is there a more general equation than the Compton equation that allows one to determine whether an electron will Compton scatter or inverse Compton scatter? If so, where can I find it (or what is it?)

Thanks.
 
Physics news on Phys.org
dansmith170 said:
Summary:: General Equation

Hi,

Is there a more general equation than the Compton equation that allows one to determine whether an electron will Compton scatter or inverse Compton scatter? If so, where can I find it (or what is it?)

Thanks.
You perhaps should have posted this under Special and General Relativity or Quantum Physics.
 
Thread moved. I figured high energy / particle / nuclear physics would be better.

As a quick answer, what you appear to be looking for is the probability that an electron will undergo Compton scattering. For that you need to start with the "cross section" for that process at whatever energy you're interested in.

Then you can compare it with the cross sections for other possible processes e.g. pair production, photoelectric effect, ...

If you tell us more about what you're trying to do, people can give more specific advice.
 
Last edited:
jtbell said:
Thread moved. I figured high energy / particle / nuclear physics would be better.

As a quick answer, what you appear to be looking for is the probability that an electron will undergo Compton scattering. For that you need to start with the "cross section" for that process at whatever energy you're interested in.

Then you can compare it with the cross sections for other possible processes e.g. pair production, photoelectric effect, ...

If you tell us more about what you're trying to do, people can give more specific advice.
Thanks for moving the thread (I wasn't sure where exactly to put it). Big picture, I'm trying to come up with an equation that will allow me to figure out the number of electrons produced by the nonlinear Breit Wheeler process (and that process requires Inverse Compton Scattering as I understand it). And thanks for your response. Sounds the Klein-Nishina formula might be relevant.
 
dansmith170 said:
Thanks for moving the thread (I wasn't sure where exactly to put it). Big picture, I'm trying to come up with an equation that will allow me to figure out the number of electrons produced by the nonlinear Breit Wheeler process (and that process requires Inverse Compton Scattering as I understand it).
Inverse Compton scattering involves the scattering of low energy photons to high energies by ultrarelativistic electrons so that the photons gain and the electrons lose energy. That would most likely be a process in stellar atmospheres, but it could be induced in an electron (beam) accelerator colliding into a laser beam.
https://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair_Radiation3.pdf

The Breit–Wheeler process or Breit–Wheeler pair production is a physical process in which a positronelectron pair is created from the collision of two photons. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta. Ref: https://en.wikipedia.org/wiki/Breit–Wheeler_process from G. Breit and John A. Wheeler (15 December 1934). "Collision of Two Light Quanta". Physical Review. 46 (12): 1087–1091. Bibcode:1934PhRv...46.1087B. doi:10.1103/PhysRev.46.1087
https://journals.aps.org/pr/abstract/10.1103/PhysRev.46.1087


So, usually two photons would produce one electron-positron pair, unless the energies are very high to produce more than one pair. I'm not aware of this done in practice, although the Wikipedia article describes some experimental efforts.

Then - The multiphoton Breit–Wheeler process, also referred to as nonlinear Breit–Wheeler or strong field Breit–Wheeler in the literature, is the extension of the pure photon–photon Breit–Wheeler process when a high-energy probe photon decays into pairs propagating through an electromagnetic field (for example, a laser pulse).

However - Manufacturing such a source, a gamma-ray laser, is still a technological challenge. No S***!This has to do with - https://www.physicsforums.com/threads/breit-wheeler-matter-production.1010438/ ?
 
Last edited:
Hi Astronuc, thanks for your reply and for the links. And yes, it's related to my earlier question about the mass production of electrons by means of Breit-Wheeler.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top