Computing a Simple Integral Via Riemann Sums

Click For Summary

Discussion Overview

The discussion revolves around solving Exercise 2(a) from Manfred Stoll's book "Introduction to Real Analysis," specifically focusing on computing a simple integral using Riemann sums. Participants explore the application of Riemann sums to the function \(x^2\) over an interval \([a,b]\) and seek clarification on the hint provided in the exercise.

Discussion Character

  • Exploratory
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant expresses confusion about how to approach the exercise and seeks clarification on Stoll's hint regarding Riemann sums.
  • Another participant outlines the process of setting up Riemann sums for the integral of \(x^2\), detailing the choice of subintervals and the right-hand endpoint method.
  • Multiple participants discuss the implications of choosing different values of \(x\) within subintervals and how this affects the integral's computation.
  • A later reply provides a detailed method using the hint, involving arbitrary partitions and inequalities to establish bounds for the integral, ultimately leading to a conclusion about the integral's value.
  • Participants acknowledge the completion of the first part of the exercise and express gratitude for the assistance received.

Areas of Agreement / Disagreement

There is no clear consensus on the best approach to the exercise, as participants present various methods and interpretations of the hint. The discussion includes both agreement on certain computational steps and differing opinions on the implications of the hint.

Contextual Notes

Some participants note the importance of correctly interpreting the hint and the choice of \(x\) in each subinterval, which remains a point of exploration rather than resolution.

Who May Find This Useful

Students and learners interested in Riemann integration, particularly those working through exercises in real analysis, may find this discussion beneficial.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Manfred Stoll's book: Introduction to Real Analysis.

I need help with Exercise 2(a) from Stoll's Exercises 6.2 on page 229 ...

Exercise 2 reads as follows:
View attachment 3967
I was somewhat puzzled about how to do this exercise ... BUT ... even more puzzled when I read Stoll's hint for solving the exercise ... which reads as follows:
View attachment 3968
I would appreciate some help in framing a solution to this exercise ... and in particular getting some insight as to how Stoll means us to solve this given his "hint" ... ...

Hope someone can clarify this for me ... help will be appreciated ...
Stoll's definitions, notation and general approach to Riemann integration through Riemann sums is as follows:
View attachment 3969
View attachment 3970

Peter
 
Physics news on Phys.org
So your interval is $[a,b]$, and you're integrating $x^2$. When you're doing Riemann sums, you can choose how you're going to pick an $x_i$ from each subinterval. Suppose you have $n$ equal-width subintervals of width
$$\Delta x=\frac{b-a}{n},$$
and you just pick the right-hand endpoint of each subinterval. Then $x_i=a+i \Delta x$, and your integral becomes
\begin{align*}
\int_a^b x^2 \, dx&=\lim_{n\to\infty}\sum_{i=1}^n (a+i\Delta x)^2 \, \Delta x \\
&=\lim_{n\to\infty}\sum_{i=1}^n \left(a+i\left(\frac{b-a}{n}\right)\right)^{\!2} \, \left(\frac{b-a}{n}\right) \\
&=\lim_{n\to\infty}\left(\frac{b-a}{n}\right)\sum_{i=1}^n \left(a^2+2ia\left(\frac{b-a}{n}\right)+i^2\left(\frac{b-a}{n}\right)^{\!2}\right) \\
&=\lim_{n\to\infty}\left(\frac{b-a}{n}\right) \left(\sum_{i=1}^na^2+\sum_{i=1}^n 2ia\left(\frac{b-a}{n}\right)+\sum_{i=1}^n i^2\left(\frac{b-a}{n}\right)^{\!2}\right) \\
&=\lim_{n\to\infty}\left(\frac{b-a}{n}\right) \left(a^2\sum_{i=1}^n 1+2a\left(\frac{b-a}{n}\right)\sum_{i=1}^n i +\left(\frac{b-a}{n}\right)^{\!2}\sum_{i=1}^n i^2\right) .
\end{align*}
These are standard sums now. Can you finish this part?

Now for the $x^n$ part, the hint there is all about choosing a value of $x$ in each subinterval. You need to show that the given value of $x$ is in the subinterval. Then, apparently, something will simplify and everything will come out great.
 
Ackbach said:
So your interval is $[a,b]$, and you're integrating $x^2$. When you're doing Riemann sums, you can choose how you're going to pick an $x_i$ from each subinterval. Suppose you have $n$ equal-width subintervals of width
$$\Delta x=\frac{b-a}{n},$$
and you just pick the right-hand endpoint of each subinterval. Then $x_i=a+i \Delta x$, and your integral becomes
\begin{align*}
\int_a^b x^2 \, dx&=\lim_{n\to\infty}\sum_{i=1}^n (a+i\Delta x)^2 \, \Delta x \\
&=\lim_{n\to\infty}\sum_{i=1}^n \left(a+i\left(\frac{b-a}{n}\right)\right)^{\!2} \, \left(\frac{b-a}{n}\right) \\
&=\lim_{n\to\infty}\left(\frac{b-a}{n}\right)\sum_{i=1}^n \left(a^2+2ia\left(\frac{b-a}{n}\right)+i^2\left(\frac{b-a}{n}\right)^{\!2}\right) \\
&=\lim_{n\to\infty}\left(\frac{b-a}{n}\right) \left(\sum_{i=1}^na^2+\sum_{i=1}^n 2ia\left(\frac{b-a}{n}\right)+\sum_{i=1}^n i^2\left(\frac{b-a}{n}\right)^{\!2}\right) \\
&=\lim_{n\to\infty}\left(\frac{b-a}{n}\right) \left(a^2\sum_{i=1}^n 1+2a\left(\frac{b-a}{n}\right)\sum_{i=1}^n i +\left(\frac{b-a}{n}\right)^{\!2}\sum_{i=1}^n i^2\right) .
\end{align*}
These are standard sums now. Can you finish this part?

Now for the $x^n$ part, the hint there is all about choosing a value of $x$ in each subinterval. You need to show that the given value of $x$ is in the subinterval. Then, apparently, something will simplify and everything will come out great.
Thanks for the help Ackbach ...

just ts finished the first part ... Tedious but straightforward ...

Thanks again,

Peter
 
Here's a way to use the hint. Let $f(x) = x^2$, $a\le x \le b$. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ be an arbitrary partition of $[a,b]$. Then

$$x_{i-1}^2 = \frac{1}{3}(x_{i-1}^2 + x_{i-1}^2 + x_{i-1}^2) < \frac{1}{3}(x_{i-1}^2 + x_{i-1}x_i + x_i^2)$$ and similarly $$x_i^2 > \frac{1}{3}(x_{i-1}^2 + x_{i-1}x_i + x_i^2).$$

Thus

$$x_{i-1}^2 < t_i < x_i^2 \quad (1 \le i \le n).$$

Multiplying by $\Delta x_i$ then summing over all $1 \le i \le n$, we obtain

$$\sum_{i = 1}^n f(x_{i-1}) \Delta x_i < \sum_{i = 1}^n t_i \Delta x_i < \sum_{i = 1}^n f(x_i) \Delta x_i.$$

Since $t_i\Delta x_i = t_i(x_i - x_{i-1}) = x_i^3 - x_{i-1}^3$ for all $i$, the middle sum telescopes to $(x_n^3 - x_0^3)/3 = (b^2 - a^2)/3$. Thus

$$\sum_{i = 1}^n f(x_{i-1}) \Delta x_i < \frac{b^3 - a^3}{3} < \sum_{i = 1}^n f(x_i) \Delta x_i.$$

Since $P$ was an arbitrary partition of $[a,b]$, it follows that $\int_a^b x^2\, dx = (b^3 - a^3)/3$.
________________________

Sorry Peter, I didn't notice that you said you finished the first part.
 
Euge said:
Here's a way to use the hint. Let $f(x) = x^2$, $a\le x \le b$. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ be an arbitrary partition of $[a,b]$. Then

$$x_{i-1}^2 = \frac{1}{3}(x_{i-1}^2 + x_{i-1}^2 + x_{i-1}^2) < \frac{1}{3}(x_{i-1}^2 + x_{i-1}x_i + x_i^2)$$ and similarly $$x_i^2 > \frac{1}{3}(x_{i-1}^2 + x_{i-1}x_i + x_i^2).$$

Thus

$$x_{i-1}^2 < t_i < x_i^2 \quad (1 \le i \le n).$$

Multiplying by $\Delta x_i$ then summing over all $1 \le i \le n$, we obtain

$$\sum_{i = 1}^n f(x_{i-1}) \Delta x_i < \sum_{i = 1}^n t_i \Delta x_i < \sum_{i = 1}^n f(x_i) \Delta x_i.$$

Since $t_i\Delta x_i = t_i(x_i - x_{i-1}) = x_i^3 - x_{i-1}^3$ for all $i$, the middle sum telescopes to $(x_n^3 - x_0^3)/3 = (b^2 - a^2)/3$. Thus

$$\sum_{i = 1}^n f(x_{i-1}) \Delta x_i < \frac{b^3 - a^3}{3} < \sum_{i = 1}^n f(x_i) \Delta x_i.$$

Since $P$ was an arbitrary partition of $[a,b]$, it follows that $\int_a^b x^2\, dx = (b^3 - a^3)/3$.
________________________

Sorry Peter, I didn't notice that you said you finished the first part.
Thanks Euge ... That is MOST helpful ...

I did not know how to use the Hint provided ...

When I said that I had finished the first part, I meant that I had finished the calculations started so helpfully by Ackbach ...

Thanks again,

Peter
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K