Computing the infinitesimal generators for the Mobius transformation

platypi
Messages
1
Reaction score
0
Homework Statement
The Mobius transformation is $$\frac{at+b}{ct+b},$$ with the constraint ##ad-bc=1##. Find the infinitesimal generators of its Lie algebra.
Relevant Equations
N/A
I don't know where to start. I understand that the constraint ##ad-bc=1## gives us one less parameter since ##d=1+bc/a##. So we can rewrite our original function. I know how to compute the generators of matrix groups but in this case the generators will be functions. I also know there should be three of them since we have three independent parameters. However, I'm not sure what to do. I think we may have to take partial derivatives?
 
Physics news on Phys.org
[ I presume your denominator should be ##ct+d## ? ]

Suppose you have a transformation of the form $$ t' = t'(t,a,b,c,...)~,$$where ##a,b,c## are parameters of the transformation.

The general formula for the generator of such a coordinate transformation is $$X_a ~=~ \left. \frac{\partial t'}{\partial a} \right|_{a,b,c=\text{Id}} \; \frac{\partial}{\partial t}$$and similarly for ##b,c,...##

The "Id" notation denotes whatever value the parameter has at the identity transformation. E.g., in the Mobius case, for ##t' = t## we must have ##a=d=1##, and ##b = c = 0##.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top