Alright, I have a conceptual question regarding Green's Theorem that I'm hoping someone here can explain. We recently learned in my college class that, by Green's Theorem, if C is a positively-oriented, piecewise-smooth, simple closed curve in the plane and D is the region bounded by C, then the line integral over the curve is equal to the double integral of the vector field's partial derivatives over the region D. Sorry I can't put that in mathematical notation, but I hope those of you familiar with Green's Theorem understand what I'm saying.(adsbygoogle = window.adsbygoogle || []).push({});

My question, though, is that aren't line integrals over closed curves equal to 0? Why, then, do these applications of Green's Theorem yield numerical answers other than 0? If I understand it correctly, only line integral of conservative vector fields over closed curves equal 0. Does this mean that, if I apply Green's Theorem and get 0 as an answer, the vector field is conservative?

I hope someone can elaborate on this a little bit. I find vector calculus in general to be a little confusing...

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Conceptual question: Green's Theorem and Line Integrals

**Physics Forums | Science Articles, Homework Help, Discussion**