Condition for resolution of two point sources of light

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Resolution
Click For Summary
The discussion centers on the Rayleigh Criterion for resolving two point sources of light, expressed by the formula θ = 1.22 λ/b, where b is the diameter of the circular aperture. Some participants initially believed the formula should be θ ≥ 0.61 λ/r, based on the relationship between diameter and radius. However, it is clarified that for resolution, the correct approach is to consider the diameter (D) directly in the formula, leading to the conclusion that D = 2r. The consensus confirms that the correct interpretation aligns with the original formula, emphasizing the importance of using the diameter for accurate calculations. Understanding these parameters is crucial for resolving light sources effectively.
songoku
Messages
2,499
Reaction score
401
Homework Statement
Please see below
Relevant Equations
##\theta=1.22 \frac{\lambda}{b}##
1712282564500.png


The formula is ##\theta=1.22 \frac{\lambda}{b}## where b is the diameter of circular aperture

I thought it would be ##\theta \geq 0.61 \frac{\lambda}{r}## since diameter = 2 x radius but the answer is (D)

Do we just consider ##r \approx b## since maybe it is small or am I missing something else?

Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement: Please see below
Relevant Equations: ##\theta=1.22 \frac{\lambda}{b}##

View attachment 342834

The formula is ##\theta=1.22 \frac{\lambda}{b}## where b is the diameter of circular aperture

I thought it would be ##\theta \geq 0.61 \frac{\lambda}{r}## since diameter = 2 x radius but the answer is (D)

Do we just consider ##r \approx b## since maybe it is small or am I missing something else?

Thanks
I agree with you.

The Rayleigh Criterion says that when two distant lights sources (wavelength, ##\lambda\,##) are viewed through a circular aperture of diameter, ##D##, they may be resolved provided that there angular separation, ##\theta## (in radians) is such that

##\displaystyle \quad \quad \theta \ge 1.22 \dfrac{\lambda}{D} \ .##

Since ##D=2r## , I agree that the correct answer is C) .
 
Thank you very much SammyS
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K