Conditional Probability - Faulty Plumbing

Click For Summary

Discussion Overview

The discussion revolves around the application of conditional probability in the context of a scenario involving clients assigned to different motels and the likelihood of faulty plumbing in their accommodations. Participants explore the calculations for overall probabilities and conditional probabilities, particularly focusing on the probability of being assigned to a specific motel given that faulty plumbing is present.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Debate/contested

Main Points Raised

  • One participant outlines the probabilities of clients being assigned to each motel and the conditional probabilities of faulty plumbing at each location.
  • Another participant attempts to clarify the calculation of the probability that a client with faulty plumbing was assigned to Lakeview, questioning the validity of various formulations they have tried.
  • Some participants express confusion regarding the application of the formulas for conditional probability, particularly in distinguishing between joint and conditional probabilities.
  • A participant provides a numerical example to illustrate the overall probability of faulty plumbing and the breakdown of clients assigned to each motel.
  • There is an exploration of the assumption of independence between the motel assignment and the occurrence of faulty plumbing, with one participant suggesting that this assumption may not hold true.

Areas of Agreement / Disagreement

Participants express varying levels of understanding regarding the calculations and concepts of conditional probability. There is no consensus on the correct approach to calculating P(L | F), and multiple interpretations of the relationships between the probabilities are presented.

Contextual Notes

Some participants note that their attempts to apply probability formulas may be based on incorrect assumptions about independence between the events of motel assignment and faulty plumbing, leading to confusion in their calculations.

newguy2
Messages
2
Reaction score
0
This question has been driving me crazy.

A large industrial firm uses three local motels to provide overnight accommodations for its clients.
From past experience it is known that 20% of the clients are assigned rooms at the Ramada Inn, 50% at the Sheraton and 30% at Lakeview. What is the probability that:

P(R) = 'Probability of being assigned to Ramada' = 20% = .20
P(S) = 'Probability of being assigned to Sheraton' = 50% = .50
P(L) = 'Probability of being assigned to Lakeview' = 30% = .30

P(F) = 'The probability of faulty plumbing' = ?

P(F | R) = 'Given room is at Ramada, prob. of faulty plumbing' = 5% = .05
P(F | S) = 'Given room is at Sheraton ...' = 4% = .04
P(F | L) = 'Given room is at Lakeview ...' = 8% = .08

Right?
So...:

A) What is the probability that a client will be assigned a room with faulty plumbing?

P(F) = P(R)P(F|R) + P(S)P(F|S) + P(L)P(F|L) = .20*.05 + .50*.04 + .30*.08 = 5.4% = .054
This makes sense...ok..
But...

B) What is the probability that a person with a room having faulty plumbing was assigned accommodations at Lakeview?

P(L | F) is what we are looking for, yes?
P(L | F) = 'Prob. of being assigned to LakeView, given room has faulty plumbing"
Right?

P(L | F) = P(L n F) / P(F) = P(F | L) P(F) / P(F) = P(F | L)...? This answer is not correct... how come?

P(L | F) = P(L n F) / P(F) = P(L) P(F) / P(F) = P(L)...? This answer is also not correct...

P(L | P(F|L)) = P(L n [F | L]) / P(F | L) = P(L)P(F | L) / P(F | L) = P(L) Still incorrect answer...

But this works...?

P(L | F) = P(L) P(F | L) / P(F) = correct answer?Please clarify all this for me.. What is happening.
 
Last edited:
Physics news on Phys.org
Hello, and welcome to MHB! (Wave)

I've moved your post into its own thread...this way the discussion will be all about your question only, and you'll be more likely to get help too. :)
 
P(L | F) = P(L n F) / P(F)

P(F | L) = P(F n L) / P(L)P(L n F) = P(L | F) P(F)
P(F n L) = P(F | L) P(L)

P(L n F) = P(F n L)

P(L n F) = P(F | L) P(L)
P(F n L) = P(L | F) P(F)

newguy said:
P(L | F) = P(L n F) / P(F) = P(F | L) P(F) / P(F) = P(F | L)...? This answer is not correct... how come?
Because P(L n F) != P(F | L) P(F)
it is P(L n F) = P(F | L) P(L)
or... P(L n F) = P(L | F) P(F)

newguy said:
P(L | F) = P(L n F) / P(F) = P(L) P(F) / P(F) = P(L)...? This answer is also not correct...
Because P(L n F) != P(L) P(F), ? How come? Independence thing?
so P(L n F) = P(L) + P(F) - P(L u F) ??

newguy said:
P(L | P(F|L)) = P(L n [F | L]) / P(F | L) = P(L)P(F | L) / P(F | L) = P(L) Still incorrect answer...
I get this is probably not even valid, this was just experimenting trying to see it gave the correct answer

newguy said:
But this works...?
P(L | F) = P(L) P(F | L) / P(F) = correct answer?
Please clarify all this for me.. What is happening.
I under stand why this works now anyways, because:
P(L n F) = P(F | L) P(L) = P(L) P(F | L)
 
newguy said:
This question has been driving me crazy.

A large industrial firm uses three local motels to provide overnight accommodations for its clients.
From past experience it is known that 20% of the clients are assigned rooms at the Ramada Inn, 50% at the Sheraton and 30% at Lakeview. What is the probability that:

P(R) = 'Probability of being assigned to Ramada' = 20% = .20
P(S) = 'Probability of being assigned to Sheraton' = 50% = .50
P(L) = 'Probability of being assigned to Lakeview' = 30% = .30

P(F) = 'The probability of faulty plumbing' = ?

P(F | R) = 'Given room is at Ramada, prob. of faulty plumbing' = 5% = .05
P(F | S) = 'Given room is at Sheraton ...' = 4% = .04
P(F | L) = 'Given room is at Lakeview ...' = 8% = .08

Right?
So...:

A) What is the probability that a client will be assigned a room with faulty plumbing?r

P(F) = P(R)P(F|R) + P(S)P(F|S) + P(L)P(F|L) = .20*.05 + .50*.04 + .30*.08 = 5.4% = .054
This makes sense...ok..
But...
Imagine 1000 clients. 20% of them, 200, are assigned to Ramada, 50% of them, 500, are assigned to Sheraton, and 30%, 300, are assigned to Lakeview.

Of the 200 assigned to Ramada, 5%, 10, have faulty plumbing. Of the 500 assigned to Sheraton, 4%, 20, have faulty plumbing. Of the 300 assigned to Lakeview, 8%, 24, have faulty plumbing. That is a total of 10+ 20+ 24= 54 or 54/1000= 0.054, 5.4% of the clients, have faulty plumbing.

B) What is the probability that a person with a room having faulty plumbing was assigned accommodations at Lakeview?
Of the 54 people who had faulty plumbing, 24, so 24/54= 0.4444 or 44.44%, were assigned to Lakeview.

P(L | F) is what we are looking for, yes?
P(L | F) = 'Prob. of being assigned to LakeView, given room has faulty plumbing"
Right?
Yes, that is correct.

P(L | F) = P(L n F) / P(F) = P(F | L) P(F) / P(F) = P(F | L)...? This answer is not correct... how come?

P(L | F) = P(L n F) / P(F) = P(L) P(F) / P(F) = P(L)...? This answer is also not correct...

P(L | P(F|L)) = P(L n [F | L]) / P(F | L) = P(L)P(F | L) / P(F | L) = P(L) Still incorrect answer...

But this works...?

P(L | F) = P(L) P(F | L) / P(F) = correct answer?Please clarify all this for me.. What is happening.
You seem to be assuming. when you write, for example, "P(L n F)= P(L)P(F)", that "faulty plumbing" is independent of which motel a client is assigned to- and that is clearly not true.
 
Last edited by a moderator:

Similar threads

Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K