I Confused about applying the Euler–Lagrange equation

AI Thread Summary
The discussion revolves around deriving the equation of motion from a Lagrangian of the form L = (mv^2)/2 + f(v)v, where f(v) is a velocity-dependent function. The key question is about the correct expression for ∂L/∂v, with initial confusion between two forms. The correct expression is clarified to be mv + f(v) + f'(v)v, emphasizing the need for ordinary derivatives rather than partial derivatives in this context. Additionally, participants suggest rewriting the Lagrangian using g(v) = f(v)v to simplify the analysis. The conversation highlights the importance of proper notation and understanding of derivatives in Lagrangian mechanics.
Malamala
Messages
345
Reaction score
28
Hello! I have a Lagrangian of the form:

$$L = \frac{mv^2}{2}+f(v)v$$
where ##f(v)## is a function of the velocity. I would like to derive the equation of motion in general, without writing down an expression for ##f(v)## yet. I have that ##\frac{\partial L}{\partial x} = 0##. However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##? Thank you!
 
Physics news on Phys.org
I guess you meant ##\frac{\partial f}{\partial v}##.

For the purpose of experiment, assume ##f(v)=\alpha v## where ##\alpha## is a constant with appropriate units (or you may assume something else simple if you prefer). You can now calculate your Lagrangian explicitly. Which of your approaches gives the right answer in that case?
 
  • Like
Likes vanhees71 and TSny
Malamala said:
However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##?
It is essentially the second expression. But the notation is a bit off in the last term where you wrote ##\frac{\partial f}{v}v##. A partial derivative should have the symbol ##\partial## in both the numerator and denominator: ##\frac{\partial f}{\partial v}##. However, note that ##f(v)## is a function of the single variable ##v##. So, a partial derivative is not really appropriate. Instead, the notation should express an ordinary derivative ##\frac{df}{dv}## or ##f'(v)##. Thus, the last term would be ##f'(v)v##.

I assume that you are dealing with a one-dimensional problem with spatial coordinate ##x## and where ##v = \frac{dx}{dt}##.
 
  • Like
Likes vanhees71 and Ibix
Malamala said:
Hello! I have a Lagrangian of the form:

$$L = \frac{mv^2}{2}+f(v)v$$
where ##f(v)## is a function of the velocity. I would like to derive the equation of motion in general, without writing down an expression for ##f(v)## yet. I have that ##\frac{\partial L}{\partial x} = 0##. However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##? Thank you!
Let ##g(v) = f(v)v##. Rewrite your Lagrangian using ##g(v)##. What do you do now that the lone ##v## has gone?
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top