I Confused about applying the Euler–Lagrange equation

Click For Summary
The discussion revolves around deriving the equation of motion from a Lagrangian of the form L = (mv^2)/2 + f(v)v, where f(v) is a velocity-dependent function. The key question is about the correct expression for ∂L/∂v, with initial confusion between two forms. The correct expression is clarified to be mv + f(v) + f'(v)v, emphasizing the need for ordinary derivatives rather than partial derivatives in this context. Additionally, participants suggest rewriting the Lagrangian using g(v) = f(v)v to simplify the analysis. The conversation highlights the importance of proper notation and understanding of derivatives in Lagrangian mechanics.
Malamala
Messages
348
Reaction score
28
Hello! I have a Lagrangian of the form:

$$L = \frac{mv^2}{2}+f(v)v$$
where ##f(v)## is a function of the velocity. I would like to derive the equation of motion in general, without writing down an expression for ##f(v)## yet. I have that ##\frac{\partial L}{\partial x} = 0##. However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##? Thank you!
 
Physics news on Phys.org
I guess you meant ##\frac{\partial f}{\partial v}##.

For the purpose of experiment, assume ##f(v)=\alpha v## where ##\alpha## is a constant with appropriate units (or you may assume something else simple if you prefer). You can now calculate your Lagrangian explicitly. Which of your approaches gives the right answer in that case?
 
  • Like
Likes vanhees71 and TSny
Malamala said:
However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##?
It is essentially the second expression. But the notation is a bit off in the last term where you wrote ##\frac{\partial f}{v}v##. A partial derivative should have the symbol ##\partial## in both the numerator and denominator: ##\frac{\partial f}{\partial v}##. However, note that ##f(v)## is a function of the single variable ##v##. So, a partial derivative is not really appropriate. Instead, the notation should express an ordinary derivative ##\frac{df}{dv}## or ##f'(v)##. Thus, the last term would be ##f'(v)v##.

I assume that you are dealing with a one-dimensional problem with spatial coordinate ##x## and where ##v = \frac{dx}{dt}##.
 
  • Like
Likes vanhees71 and Ibix
Malamala said:
Hello! I have a Lagrangian of the form:

$$L = \frac{mv^2}{2}+f(v)v$$
where ##f(v)## is a function of the velocity. I would like to derive the equation of motion in general, without writing down an expression for ##f(v)## yet. I have that ##\frac{\partial L}{\partial x} = 0##. However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##? Thank you!
Let ##g(v) = f(v)v##. Rewrite your Lagrangian using ##g(v)##. What do you do now that the lone ##v## has gone?
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
6
Views
2K
Replies
2
Views
572
  • · Replies 0 ·
Replies
0
Views
835
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
334