dyn
- 774
- 63
atyy said:Roughly, a ket can be represented as a column vector. So let's say there are only 2 possible positions. Also let us choose to represent the ket |x=1> as the column vector [1 0]T, and the ket |x=2> as the column vector [0 1]T, ie. we choose as basis vectors states of definite position. An arbitary ket is then |ψ>=ψ(1)|x=1>+ψ(2)|x=2>, or equivalently as the wavefunction [ψ(1) ψ(2)]T, or equivalently the wavefunction ψ(x) where x is an index that runs from 1 to 2.
However, x actually is not discrete with only 2 values, it runs continuously. So if we use basis vectors with a definite position, then the ket |ψ> is an infinite dimensional column vector. An element of this column vector ψ(x) is the probability amplitude that a particle will be found at location x.
The above is rigourously incorrect, because there are sonme subtleties for infinite dimensional spaces, but the idea is roughly ok. Take a look at the explanations in http://physics.mq.edu.au/~jcresser/Phys304/Handouts/QuantumPhysicsNotes.pdf (chapters 8-10).
Thanks. You said an element of the column vector ψ(x). Did you mean an element of the ket |ψ> ? But you then relate it to location x. I thought kets are independent of basis ? So why would it be location x and not momentum p or some other basis ?