- #1

karnten07

- 213

- 0

## Homework Statement

Let n [tex]\geq[/tex]1. Let <a1,...,as> [tex]\in[/tex]Sn be a cycle and let [tex]\sigma[/tex][tex]\in[/tex]Sn be arbitrary. Show that

[tex]\sigma\circ[/tex] <a1,...,as> [tex]\circ[/tex][tex]\sigma^{-1}[/tex] = <[tex]\sigma[/tex](a1),...,[tex]\sigma[/tex](as)> in Sn.

## Homework Equations

## The Attempt at a Solution

As the title says, i believe this is a theorem regarding that the inverse permutation is the effect of a conjugation of a permutation by a permutation in a permutation group. Does anyone know a proof for this or where to find one?