Proving Permutation Inverses: (1 2 3) = (4 5 6)

  • Thread starter Thread starter Justabeginner
  • Start date Start date
  • Tags Tags
    Permutation
Click For Summary

Homework Help Overview

The discussion revolves around proving the existence of a permutation sigma such that sigma * (1 2 3) * sigma inverse = (4 5 6). The problem is situated within the context of abstract algebra, specifically focusing on permutations and their properties.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the implications of the equality involving permutations and question how to interpret the notation used. There are discussions about the nature of the cycles and whether the product can be simplified. Some participants suggest using known theorems about permutations, while others express confusion about constructing specific permutations or understanding cycle notation.

Discussion Status

The discussion is ongoing, with various participants providing hints and exploring different interpretations of the problem. Some guidance has been offered regarding the use of transpositions to construct the desired permutation, but no consensus has been reached on a specific approach or solution.

Contextual Notes

There is mention of confusion regarding the notation used for permutations, particularly in two-line form, and how it relates to the cycles being discussed. Additionally, participants are navigating the complexities of disjoint cycles and the order of operations in permutations.

  • #61
jbunniii said:
Yes, that's correct. Note that this solution changes the cycle (1 2 3) to (4 5 6), and it changes the singleton cycles (4), (5), (6) to (1), (2), (3) respectively. In other words, writing out the full cycle notation including singletons:
##\sigma##(1 2 3)(4)(5)(6)##\sigma^{-1}## = (4 5 6)(1)(2)(3)

There are five other solutions in which (4), (5), and (6) are mapped to different arrangements of (1), (2), and (3), for example:
##\sigma##(1 2 3)(4)(5)(6)##\sigma^{-1}## = (4 5 6)(1)(3)(2)

The right hand side (4 5 6)(1)(3)(2) is the same permutation as (4 5 6)(1)(2)(3), since disjoint cycles commute, but we obtain it using a different ##\sigma##.

If you're bored, you can try to find the other solutions. :biggrin: For example, to transform
(1 2 3)(4)(5)(6) to
(4 5 6)(1)(3)(2),

##\sigma## needs to map as follows:
##1 \mapsto 4##
##4 \mapsto 1##
##2 \mapsto 5##
##5 \mapsto 3##
##3 \mapsto 6##
##6 \mapsto 2##
and therefore ##\sigma## = (1 4)(2 5 3 6) is another solution to the problem.

I did not know about singletons; thank you for that information!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K