Conservation of energy in rotating bodies

AI Thread Summary
The discussion focuses on the conservation of energy in a system involving a cylinder and a block, highlighting the conversion of gravitational potential energy (GPE) to kinetic energy (KE). The initial calculation of the cylinder's KE using the formula 1/2mv^2 is challenged, as the cylinder is not rotating about its center of mass but rather about the point of contact with the step. It is clarified that the correct approach involves treating the mass center of the cylinder as a particle moving in a circular arc around the contact point. The conversation emphasizes the importance of considering the forces acting on the cylinder and resolving them to analyze the motion accurately. The discussion concludes that using energy conservation principles can simplify the problem without resorting to complex equations.
phantomvommand
Messages
287
Reaction score
39
Screenshot 2021-03-01 at 2.29.09 AM.png


The conservation of energy equation is basically GPE is converted to KE of block and KE of cylinder.

To get the correct answer, the KE of the cylinder is 1/2mv^2, where m is its mass and v is the velocity of its COM (which is the centre of cylinder).
However, I viewed the cylinder as rotating about the point of contact with the step, and thus thought that its KE was 1/2Iw^2, where I = 3/2mr^2 (by parallel axis theorem), and rw = v, where v is the velocity of the centre of mass.

Why is my calculation of KE for the cylinder wrong?

Thank you for your help.

This problem can be found in Jaan Kalda's Mechanics problems, or in SS Krotov's Aptitude Test Problems.
 
Physics news on Phys.org
phantomvommand said:
Summary:: Why is the kinetic energy I ascribe to the cylinder in the following question wrong?

Why is my calculation of KE for the cylinder wrong?
Because the cylinder is not rotating.
 
phantomvommand said:
I viewed the cylinder as rotating about the point of contact with the step
Why about this contact and not the other one? Why rotating at all?
 
as they above say your work is wrong, but u have some ok intuition. cylinder not rotate about its mass centre, however the mass centre point do rotate in circular arc about the contact point on right (well, so long as it is still contact!). this you can use to advantage! say, mass centre of cylinder has rotate by ##\theta## about right point of contact. let ##v = |\underline{v}|## be speed of the mass centre. can first use the energy conserve$$2gr(1-\cos{\theta}) = v^2$$now, remember that mass centre move as if it were particle which is act upon by resultant force, so you now pretend mass centre is a particle, and resolve resultant of force toward right contact point (i.e. you calculate centripetal component):$$-N + mg\cos{\theta} + N_2 \sin{2\theta} = \frac{mv^2}{r}$$where ##N## is force of contact from right point, and ##N_2## force of contact from left point. now you must do examine cases when ##N = 0## and ##N_2 = 0## respective, i.e. set each to ##0## in turn and use two equation to eliminate ##v##, and find ##\theta_{\text{max}}## for each. then you can tell, which lose contact first.

see - much more easy than do use lot of messy coordinate and difficult equation, yes ;)
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top