- #1

- 3

- 0

I'm trying to understand basic principles of ancient thrown weaponry. Let's say we have something like a bar with a known inertia tensor that is thrown from one end such that it is both rotating and translating. If it strikes something along either side of its center of mass (an off-center impact), how can we understand the energy available in the impact? For example if it strikes with its long axis roughly perpendicular to the vector of translation (see sketch), on one side (the "advancing" side relative to the combined rotation and translation vectors) the kinetic energy in the impact will be much higher than on the "receding" side. But even here not all the KE available in the body will be transferred to the impacted object (which for the sake of simplicity can be inelastic). I hope it's as simple as including the distance (r) from CM somewhere in the equation? Please forgive the terrible sketch.