Consider a $2\times 2$ matrix

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The discussion focuses on proving the formula for the inverse of a $2 \times 2$ matrix \(A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}\) with a non-zero determinant \(\det A = ad - bc \neq 0\). Sudharaka successfully demonstrates that the proposed inverse \(A^{-1}=\frac{1}{\det A} \begin{bmatrix}d & -b \\ -c & a\end{bmatrix}\) satisfies the conditions for being an inverse by showing that both \(AB\) and \(BA\) equal the identity matrix. The calculations confirm that multiplying \(A\) by its proposed inverse yields the identity matrix, thus validating the inverse formula. The discussion concludes with a confirmation of the correctness of the solution provided.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Thank you to Chris L T521 for submitting this problem!

Consider a $2\times 2$ matrix

\[A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}.\]

If $\det A = ad-bc \neq 0$, show that

\[A^{-1}=\frac{1}{\det A} \begin{bmatrix}d & -b \\ -c & a\end{bmatrix}.\]
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) Sudharaka

Solution:

Here is the way Sudharaka correctly demonstrated that the given matrix inverse for A satisfied the conditions necessary to in fact be its inverse.

[sp]\(\mbox{Let, }A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}\mbox{ and }B=\frac{1}{\det A} \begin{bmatrix}d & -b \\ -c & a\end{bmatrix}\mbox{ where }\det A=ad-bc\neq 0\,.\)

\begin{eqnarray}

AB &=& \frac{1}{\det A}\begin{bmatrix}a & b \\ c & d\end{bmatrix}\begin{bmatrix}d & -b \\ -c & a\end{bmatrix}\\

&=&\frac{1}{\det A}\begin{bmatrix}ad-bc & 0 \\ 0 & ad-bc\end{bmatrix}\\

&=&\frac{1}{ad-bc}\begin{bmatrix}ad-bc & 0 \\ 0 & ad-bc\end{bmatrix}\\

&=&\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\\

\therefore AB &=&\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}~~~~~~~~~~(1)

\end{eqnarray}

Similarly,

\begin{eqnarray}

BA &=& \frac{1}{\det A}\begin{bmatrix}d & -b \\ -c & a\end{bmatrix}\begin{bmatrix}a & b \\ c & d\end{bmatrix}\\

&=&\frac{1}{\det A}\begin{bmatrix}ad-bc & 0 \\ 0 & ad-bc\end{bmatrix}\\

&=&\frac{1}{ad-bc}\begin{bmatrix}ad-bc & 0 \\ 0 & ad-bc\end{bmatrix}\\

&=&\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\\

\therefore BA &=&\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}~~~~~~~~~~(1)

\end{eqnarray}

By (1) and (2);

\[AB=BA=I\mbox{ where }I\mbox{ is the identity matrix of order 2}\]

\[\therefore B=A^{-1}=\frac{1}{\det A} \begin{bmatrix}d & -b \\ -c & a\end{bmatrix}\]

Q.E.D[/sp]
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
753
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K