- #1
kntsy
- 82
- 0
Hi,
1.
[tex]\color{blue}dq=dU+PdV[/tex]
so
[tex]C_V = \left(\frac {\partial q}{\partial T}\right)_V= \left(\frac {\partial U}{\partial T}\right)_V[/tex]
leads to
[tex]dU=C_{V}dT[/tex]
so
[tex]\color{red}\left(\frac {\partial U}{\partial V}\right)_T = 0[/tex]
meaning that internal energy of NONideal gas is a sole function of T?
2.
As
[tex]\color{blue}dq=dU+PdV[/tex]
so
[tex]\left(\frac {\partial U}{\partial V}\right)_T= \left(\frac {\partial V}{\partial T}\right)_P \left(C_P-C_V\right) - P[/tex]
why? even for ideal gas the change in volume results in change in internal energy:
[tex]\color{red}\left(\frac {\partial U}{\partial V}\right)_T \not= 0??[/tex]
thanks for answering.
1.
[tex]\color{blue}dq=dU+PdV[/tex]
so
[tex]C_V = \left(\frac {\partial q}{\partial T}\right)_V= \left(\frac {\partial U}{\partial T}\right)_V[/tex]
leads to
[tex]dU=C_{V}dT[/tex]
so
[tex]\color{red}\left(\frac {\partial U}{\partial V}\right)_T = 0[/tex]
meaning that internal energy of NONideal gas is a sole function of T?
2.
As
[tex]\color{blue}dq=dU+PdV[/tex]
so
[tex]\left(\frac {\partial U}{\partial V}\right)_T= \left(\frac {\partial V}{\partial T}\right)_P \left(C_P-C_V\right) - P[/tex]
why? even for ideal gas the change in volume results in change in internal energy:
[tex]\color{red}\left(\frac {\partial U}{\partial V}\right)_T \not= 0??[/tex]
thanks for answering.
Last edited: