Contact Mechanics: Deformation of a ball on a surface

Click For Summary

Homework Help Overview

The discussion revolves around the deformation of a solid ball resting on a hard surface, specifically focusing on the estimation of the contact radius and the relationship between stress and strain in this context. Participants are exploring concepts related to mechanics, particularly in the area of contact mechanics and material deformation.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to understand the relationship between horizontal and vertical quantities in the context of pressure and strain. Questions are raised about the reasoning behind the assumption that pressure decreases with height above the contact radius and how this relates to the estimation of strain.

Discussion Status

The discussion is active, with participants providing algebraic expressions and reasoning to clarify their understanding of the problem. Some guidance has been offered regarding the relationship between the dimensions involved, but no consensus has been reached on the interpretations of the assumptions made in the original problem.

Contextual Notes

Participants are working under the assumption that the radius of contact is much smaller than the radius of the ball, which influences their reasoning about pressure distribution and strain calculations. There is also a focus on the implications of this assumption for the equations being discussed.

phantomvommand
Messages
287
Reaction score
39
Homework Statement
See picture below
Relevant Equations
Y = Stress / Strain
A solid ball of radius R, density ρ, and Young’s modulus Y rests on a hard table. Because of its weight, it deforms slightly, so that the area in contact with the table is a circle of radius r. Estimate r, assuming that it is much smaller than R.
Screenshot 2024-06-03 at 1.35.49 AM.png


Screenshot 2024-06-03 at 1.36.19 AM.png

Screenshot 2024-06-03 at 1.36.41 AM.png


I have no issues understanding the estimation of stress, but the estimation of strain greatly confuses me.

1. How did the author know that "at heights greater than r, the pressure will be smaller"? Isn't r a horizontal quantity? What does it have to do with heights?

2. "Since stress is proportional to strain, that means that the part of the ball that is significantly strained has height r." Again, how does this have anything to do with r, given that r is a horizontal quantity and that the strain is vertical (ish).

3. Even if assuming that the previous 2 claims are true, how was the equation ##\frac {\delta} {r} \sim \frac {r} {R}## obtained?
 
Physics news on Phys.org
phantomvommand said:
1. How did the author know that "at heights greater than r, the pressure will be smaller"? Isn't r a horizontal quantity? What does it have to do with heights?
At height r above the flat base, the radius is ##\sqrt{2r\sqrt{R^2-r^2}}## (check my algebra). If r<<R that's about ##\sqrt{2Rr}##. The author is taking that as constituting a value significantly greater than r.
phantomvommand said:
3. Even if assuming that the previous 2 claims are true, how was the equation ##\frac {\delta} {r} \sim \frac {r} {R}## obtained?
In the diagram, the total extent of compression is ##\delta=R-\sqrt{R^2-r^2}\approx \frac{r^2}{2R}##.
 
  • Like
Likes   Reactions: phantomvommand
haruspex said:
At height r above the flat base, the radius is ##\sqrt{2r\sqrt{R^2-r^2}}## (check my algebra). If r<<R that's about ##\sqrt{2Rr}##. The author is taking that as constituting a value significantly greater than r.

In the diagram, the total extent of compression is ##\delta=R-\sqrt{R^2-r^2}\approx \frac{r^2}{2R}##.
But how does ##\sqrt {2Rr} >> r## mean that pressures at heights above r will be smaller?

Sorry, I wasnt clear about my final question. It should be why ##strain \sim \frac {\delta} {r}##. But I suppose if the claim that pressures above r are substantially smaller, then r will be the effective length used in calculation of strain, instead of the more obvious R?
 
phantomvommand said:
But how does ##\sqrt {2Rr} >> r## mean that pressures at heights above r will be smaller?
It is not that there is anything magic about the height being less than or more than r.
At the base, the force is spread over area ##\pi r^2##. At height r it is spread over ##2\pi Rr##. If R>>r then ##Rr>>r^2##. Therefore the stress is significantly less by the time you get to that height.
phantomvommand said:
Sorry, I wasnt clear about my final question. It should be why ##strain \sim \frac {\delta} {r}##. But I suppose if the claim that pressures above r are substantially smaller, then r will be the effective length used in calculation of strain, instead of the more obvious R?
Yes, that is the reasoning.
 
  • Like
Likes   Reactions: phantomvommand

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
Replies
14
Views
3K
  • · Replies 63 ·
3
Replies
63
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K